Skip to main content

Advertisement

Log in

Satisficing Versus Optimality: Criteria for Sustainability

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Economic analysis addresses risk and long-term issues with discounted expected utility, focusing on optimality. Viability theory is rooted on satisfying sustainability constraints over time, focusing on feasibility. We build a bridge between these two approaches by establishing that viability is equivalent to an array of degenerate intertemporal optimization problems. First, we focus our attention on the deterministic case. We highlight the connections between the viability kernel and the minimum time of crisis. Carrying on, we lay out stochastic viability, turning the spotlight onto the notions of viable scenario and maximal viability probability. Our conceptual results bring the viability approach closer to the economic approach, especially in the stochastic case and regarding efficiency. We discuss the possible use of viability as a theoretical framework for biodiversity conservation, ecosystem management and climate change issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The word satisficing inspired by Simon (1957) and bounded rationality does not here refer to a situation of limited information in the decision process but as an alternative to optimality.

  2. When the horizon T<+∞, the indicator \(\mathcal{I}^{k}_{T} \) only maps the state space \(\mathbb {X}\) towards \(\mathbb {R}\) because there is no decision at time T. However, for the sake of homogeneity of notations, we will write \(\mathcal{I}^{k}_{T} (x(T),c(T) ) \) for \(\mathcal{I}^{k}_{T} (x(T) ) \).

  3. Without loss of generality, a “bad” indicator, such as pollution, can be represented by its negative value, so that the direction of the inequality holds.

  4. Since the indicator \(\mathcal{I}^{k}_{t}\) and the threshold \(\theta^{k}_{t}\) are allowed to explicitly depend on time t, we can cover the case of absence of constraints (take \(\mathcal{I}^{k}_{t}\) having constant value greater than \(\theta^{k}_{t}\)), or of final target constraint (take \(\mathcal{I}^{k}_{t}(x,c)=0\) and \(\theta^{k}_{t}=0\) for all t=t 0,…,T−1, but not for \(\mathcal{I}^{k}_{T}(x,c)\) and \(\theta^{k}_{T}\)).

  5. Such functions are also called indicator functions. Since we already use the term “indicator” with another meaning, we choose to speak of characteristic functions.

  6. An equivalent additive form is \(\sum_{k=1}^{K} ( 1 - \mathbf{1}_{[\theta^{k}_{t},+\infty[} (\mathcal{I}^{k}_{t} (x(t),c(t) ) ) ) = 0 \), and the minimum form is \(\min_{k=1, \ldots, K} \mathbf{1}_{[\theta^{k}_{t},+\infty[} (\mathcal{I}^{k}_{t} (x(t),c(t) ) ) = 1 \).

  7. As we are summing nonnegative numbers, the given sum is mathematically well-defined whether the time horizon is finite, i.e., T<+∞, or infinite, i.e., T=+∞.

  8. See footnote 7.

  9. As we are multiplying numbers belonging to [0,1], the given product is mathematically well-defined whether the time horizon is finite, i.e., T<+∞, or infinite, i.e., T=+∞.

  10. So does the time-multiplicative form (13).

  11. The probability \(\mathbb {P}\) is defined on the Borel product σ-field of \(\mathbb {W}^{T-t_{0}+1} \). The mappings G t , \(\mathcal{I}^{1}_{t}\), …, \(\mathcal{I}^{k}_{t}\), and all decision rules \(\mathfrak{c}_{t}\) (see below) are supposed to be measurable.

  12. The notation w(⋅)=(w(t 0),…,w(T−1)) still denotes a generic point in Ω; however, it may also be interpreted as a sequence of random variables when w(⋅) is identified with the identity mapping from Ω to Ω.

  13. When the horizon T<+∞, the \(\mathcal{I}^{k}_{T} \) only maps the state space \(\mathbb {X}\times \mathbb {W}\) towards \(\mathbb {R}\) because there is no decision at time T. However, for the sake of homogeneity of notations, we will write \(\mathcal{I}^{k}_{T} (x(T),c(T), w(T) ) \) for \(\mathcal{I}^{k}_{T} (x(T),w(T) ) \).

  14. As a consequence, we do not consider the case where only a corrupted observation of the state is available to the decision-maker (as it may nevertheless be the case in practical situations).

  15. Mathematical materials for stochastic viability can be found in Aubin and Da Prato (1998), Buckdahn et al. (2004) but they focus on the continuous time case. Contributions for discrete time systems are: Doyen et al. (2007), Béné and Doyen (2008), De Lara and Doyen (2008), De Lara and Martinet (2009), Doyen and De Lara (2010).

  16. An exponential increase in relative prices may nevertheless compensate the exponential decrease (Boiteux 1976; Philibert 1999, 2006; Sterner and Persson 2008).

References

  • Allais, M. (1953). Le comportement de l’homme rationnel devant le risque: critique des postulats et axiomes de l’école américaine. Econometrica, 21(4), 503–546.

    Article  MathSciNet  MATH  Google Scholar 

  • Aubin, J.-P. (1991). Viability theory. Boston: Birkhäuser. 542 pp.

    MATH  Google Scholar 

  • Aubin, J.-P., & Da Prato, G. (1998). The viability theorem for stochastic differential inclusions. Stoch. Anal. Appl., 16, 1–15.

    Article  MATH  Google Scholar 

  • Baumgärtner, S., & Quaas, M. F. (2009). Ecological-economic viability as a criterion of strong sustainability under uncertainty. Ecol. Econ., 68(7), 2008–2020.

    Article  Google Scholar 

  • Béné, C., & Doyen, L. (2008). Contribution values of biodiversity to ecosystem performances: a viability perspective. Ecol. Econ., 68(1–2), 14–23.

    Article  Google Scholar 

  • Béné, C., Doyen, L., & Gabay, D. (2001). A viability analysis for a bio-economic model. Ecol. Econ., 36, 385–396.

    Article  Google Scholar 

  • Boiteux, M. (1976). À propos de la “critique de la théorie de l’actualisation telle qu’employée en France”. Rev. Econ. Polit., 5.

  • Buckdahn, R., Quincampoix, M., Rainer, C., & Rascanu, A. (2004). Stochastic control with exit time and contraints, application to small time attainability of sets. Appl. Math. Optim., 49, 99–112.

    Article  MathSciNet  MATH  Google Scholar 

  • Chakravorty, U., Moreaux, M., & Tidball, M. (2008). Ordering the extraction of polluting nonrenewable resources. Am. Econ. Rev., 98(3), 1128–1144.

    Article  Google Scholar 

  • Chichilnisky, G. (1996). An axiomatic approach to sustainable development. Soc. Choice Welf., 13(2), 219–248.

    Article  MathSciNet  Google Scholar 

  • Cissé, A., Gourguet, S., Doyen, L., Blanchard, F., & Péreau, J.-C. (2013). A bio-economic model for the ecosystem-based management of the coastal fishery in French Guiana. Environ. Dev. Econ., 18, 245–269.

    Article  Google Scholar 

  • Clark, C. W. (1990). Mathematical bioeconomics (2nd ed.). New York: Wiley.

    MATH  Google Scholar 

  • Dasgupta, P., & Heal, G. (1974). The optimal depletion of exhaustible resources. Rev. Econ. Stud., 41, 1–28. Symposium on the economics of exhaustible resources.

    Article  Google Scholar 

  • De Lara, M., & Martinet, V. (2009). Multi-criteria dynamic decision under uncertainty: a stochastic viability analysis and an application to sustainable fishery management. Math. Biosci., 217(2), 118–124.

    Article  MathSciNet  MATH  Google Scholar 

  • De Lara, M., & Doyen, L. (2008). Sustainable Management of Natural Resources. Mathematical Models and Methods. Berlin: Springer.

    Google Scholar 

  • De Lara, M., Ocaña Anaya, E., Oliveros-Ramos, R., & Tam, J. (2012). Ecosystem viable yields. Environ. Model. Assess., 17(6), 565–575.

    Article  Google Scholar 

  • Doyen, L., & De Lara, M. (2010). Stochastic viability and dynamic programming. Syst. Control Lett., 59(10), 629–634.

    Article  MATH  Google Scholar 

  • Doyen, L., & Martinet, V. (2012). Maximin, viability and sustainability. J. Econ. Dyn. Control, 36(9), 1414–1430.

    Article  MathSciNet  Google Scholar 

  • Doyen, L., & Péreau, J.-C. (2009). The precautionary principle as a robust cost-effectiveness problem. Environ. Model. Assess., 14(1), 127–133.

    Article  Google Scholar 

  • Doyen, L., & Saint-Pierre, P. (1997). Scale of viability and minimum time of crisis. Set-Valued Anal., 5, 227–246.

    Article  MathSciNet  MATH  Google Scholar 

  • Doyen, L., De Lara, M., Ferraris, J., & Pelletier, D. (2007). Sustainability of exploited marine ecosystems through protected areas: a viability model and a coral reef case study. Ecol. Model., 208(2–4), 353–366.

    Article  Google Scholar 

  • Doyen, L., Thébaud, O., Béné, C., Martinet, V., Gourguet, S., Bertignac, M., Fifas, S., & Blanchard, F. (2012). A stochastic viability approach to ecosystem-based fisheries management. Ecol. Econ., 75, 32–42.

    Article  Google Scholar 

  • Dubbins, L. E., & Savage, L. J. (1965). How to gamble if you must: inequalities for stochastic processes. New York: McGraw-Hill.

    Google Scholar 

  • Ellsberg, D. (1961). Risk, ambiguity, and the Savage axioms. Q. J. Econ., 75, 643–669.

    Article  MATH  Google Scholar 

  • Gollier, C. (2008). Discounting with fat-tailed economic growth. J. Risk Uncertain., 37(2), 171–186.

    Article  MATH  Google Scholar 

  • Gourguet, S., Macher, C., Doyen, L., Thébaud, O., Bertignac, M., & Guyader, O. (2013). Managing mixed fisheries for bio-economic viability. Fish. Res., 140, 46–62.

    Article  Google Scholar 

  • Hardy, P.-Y., Béné, C., Doyen, L., & Schwarz, A.-M. (2013). Food security versus environment conservation: a case study of Solomon islands’ small-scale fisheries. Environ. Dev., 8, 38–56.

    Article  Google Scholar 

  • Heal, G. (1998). Valuing the future, economic theory and sustainability. New York: Columbia University Press.

    Google Scholar 

  • Howarth, R. (1995). Sustainability under uncertainty: a deontological approach. Land Econ., 71(4), 417–427.

    Article  Google Scholar 

  • ICES (2004). Report of the ICES advisory committee on fishery management and advisory committee on ecosystems, 2004. ICES Advice, vol. 1, 1544 pp.

  • Kahneman, D., & Tversky, A. (1979). Prospect theory: an analysis of decision under risk. Econometrica, 47(2), 263–292.

    Article  MATH  Google Scholar 

  • Koopmans, T. (1965). On the concept of optimal economic growth. Acad. Sci. Scr. Var., 28, 225–300.

    Google Scholar 

  • Krawczyk, J., & Kim, K. (2009). Satisficing solutions to a monetary policy problem: a viability theory approach. Macroeconomic Dynamics, 13(1), 46–80.

    Article  MATH  Google Scholar 

  • Lopes, L. L. (1996). When time is of the essence: averaging, aspiration, and the short run. Organ. Behav. Hum. Decis. Process., 65(3), 179–189.

    Article  Google Scholar 

  • Mäler, K. G. (2002). Environment, uncertainty, and option values. Beijer Institute working paper.

  • Martin, S. (2004). The cost of restoration as a way of defining resilience: a viability approach applied to a model of lake eutrophication. Ecology and Society, 9(2), 8.

    Google Scholar 

  • Martinet, V., & Doyen, L. (2007). Sustainable management of an exhaustible resource: a viable control approach. Resour. Energy Econ., 29(1), 19–37.

    Article  Google Scholar 

  • Martinet, V., Doyen, L., & Thébaud, O. (2007). Defining viable recovery paths toward sustainable fisheries. Ecol. Econ., 64(2), 411–422.

    Article  Google Scholar 

  • Martinet, V., Thébaud, O., & Rapaport, A. (2010). Hare or Tortoise? Trade-offs in recovering sustainable bioeconomic systems. Environ. Model. Assess., 15(6), 503–517.

    Article  Google Scholar 

  • Morris, W. F., & Doak, D. F. (2003). Quantitative conservation biology: theory and practice of population viability analysis. Sunderland: Sinauer.

    Google Scholar 

  • Mouysset, L., Doyen, L., & Jiguet, F. (2014). From population viability analysis to coviability of farmland biodiversity and agriculture. Conserv. Biol., 28(1), 187–201.

    Article  Google Scholar 

  • Péreau, J.-C., Doyen, L., Little, L. R., & Thébaud, O. (2012). The triple bottom line: meeting ecological, economic and social goals with individual transferable quotas. J. Environ. Econ. Manag., 63(3), 419–434.

    Article  Google Scholar 

  • Philibert, C. (1999). The economics of climate change and the theory of discounting. Energy Policy, 27(15), 913–927.

    Article  Google Scholar 

  • Philibert, C. (2006). Discounting the future. In D. Pannell & S. Schilizzi (Eds.), Discounting and discount rates in theory and practice (pp. 136–148). Cheltenham: Edward Elgar. Chap. 10.

    Google Scholar 

  • Savage, L. J. (1972). The foundations of statistics (2nd ed.). New York: Dover.

    MATH  Google Scholar 

  • Simon, H. (1957). A behavioral model of rational choice. In Models of man, social and rational: mathematical essays on rational human behavior in a social setting. New York: Wiley.

    Google Scholar 

  • Solow, R. M. (1974). Intergenerational equity and exhaustible resources. Rev. Econ. Stud., 41, 29–45. Symposium on the economics of exhaustible resources.

    Article  Google Scholar 

  • Stern, N. (2006). The economics of climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Sterner, T., & Persson, U. M. (2008). An even sterner review: introducing relative prices into the discounting debate. Rev. Environ. Econ. Policy, 2(1), 61–76.

    Article  Google Scholar 

  • Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: cumulative representation of uncertainty. J. Risk Uncertain., 5(4), 297–323.

    Article  MATH  Google Scholar 

  • von Neuman, J., & Morgenstern, O. (1947). Theory of games and economic behaviour (2nd ed.). Princeton: Princeton University Press.

    Google Scholar 

  • Weitzman, M. L. (2007). A review of the Stern review on the economics of climate change. J. Econ. Lit., 45(3), 703–724.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the Editor and to two Reviewers for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel De Lara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Lara, M., Martinet, V. & Doyen, L. Satisficing Versus Optimality: Criteria for Sustainability. Bull Math Biol 77, 281–297 (2015). https://doi.org/10.1007/s11538-014-9944-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-014-9944-8

Keywords

Navigation