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                    Abstract
A hybrid asymptotic–numerical method is formulated and implemented to accurately calculate the mean first passage time (MFPT) for the expected time needed for a predator to locate small patches of prey in a 2-D landscape. In our analysis, the movement of the predator can have both a random and a directed component, where the diffusivity of the predator is isotropic but possibly spatially heterogeneous. Our singular perturbation methodology, which is based on the assumption that the ratio \(\varepsilon \) of the radius of a typical prey patch to that of the overall landscape is asymptotically small, leads to the derivation of an algebraic system that determines the MFPT in terms of parameters characterizing the shapes of the small prey patches together with a certain Green’s function, which in general must be computed numerically. The expected error in approximating the MFPT by our semi-analytical procedure is smaller than any power of \({-1/\log \varepsilon }\), so that our approximation of the MFPT is still rather accurate at only moderately small prey patch radii. Overall, our hybrid approach has the advantage of eliminating the difficulty with resolving small spatial scales in a full numerical treatment of the partial differential equation (PDE). Similar semi-analytical methods are also developed and implemented to accurately calculate related quantities such as the variance of the mean first passage time (VMFPT) and the splitting probability. Results for the MFPT, the VMFPT, and splitting probability obtained from our hybrid methodology are validated with corresponding results computed from full numerical simulations of the underlying PDEs.



                    
    


                    
                        
                            
                                
                                    
                                        
                                    
                                    
                                        This is a preview of subscription content, log in via an institution
                                    
                                    
                                        
                                     to check access.
                                

                            

                        

                        
                            
                                
                                    Access this article

                                    
                                        
                                            
                                                
                                                    Log in via an institution
                                                    
                                                        
                                                    
                                                
                                            

                                        
                                    
                                    
                                        
 
 
  
   
    
     
     
      Buy article PDF USD 39.95
     

    

    Price excludes VAT (USA)

     Tax calculation will be finalised during checkout.

    Instant access to the full article PDF.

   

  

  
 

 
  
   
    Rent this article via DeepDyve
     
      
     

   

  

  
 


                                    

                                    
                                        Institutional subscriptions
                                            
                                                
                                            
                                        

                                    

                                

                            
                        

                        
                            Fig. 1[image: ]


Fig. 2[image: ]


Fig. 3[image: ]


Fig. 4[image: ]


Fig. 5[image: ]


Fig. 6[image: ]


Fig. 7[image: ]


Fig. 8[image: ]


Fig. 9[image: ]


Fig. 10[image: ]


Fig. 11[image: ]


Fig. 12[image: ]


Fig. 13[image: ]


Fig. 14[image: ]


Fig. 15[image: ]


Fig. 16[image: ]



                        

                    

                    
                        
                    


                    
                        
                            
                                
        
            
                Similar content being viewed by others

                
                    
                        
                            
                                
                                    [image: ]

                                
                                
                                    
                                        Asymptotic behavior of solutions to a class of diffusive predator–prey systems
                                        
                                    

                                    
                                        Article
                                        
                                         23 November 2017
                                    

                                

                                Arnaud Ducrot & Jong-Shenq Guo

                            
                        

                    
                        
                            
                                
                                    [image: ]

                                
                                
                                    
                                        Exact Solutions of a Diffusive Predator–Prey System by the Generalized Riccati Equation
                                        
                                    

                                    
                                        Article
                                        
                                         22 September 2015
                                    

                                

                                Hyunsoo Kim & Jin Hyuk Choi

                            
                        

                    
                        
                            
                                
                                    [image: ]

                                
                                
                                    
                                        On the existence of generalized solutions to a spatio-temporal predator–prey system with prey-taxis
                                        
                                    

                                    
                                        Article
                                         Open access
                                         21 February 2023
                                    

                                

                                Dietmar Hömberg, Robert Lasarzik & Luisa Plato

                            
                        

                    
                

            
        
            
        
    
                            
                        
                    

                    

                    

                    References
	Amoruso C, Lagache T, Holcman D (2011) Modeling the early steps of cytoplasmic trafficking in viral infection and gene delivery. SIAM J Appl Math 71(6):2334–2358
Article 
    MathSciNet 
    MATH 
    
                    Google Scholar 
                

	Bartumeus F, Da Luz MGE, Viswanathan GM, Catalan J (2005) Animal search strategies: a quantitative random-walk analysis. Ecology 86(11):3078–3087
Article 
    
                    Google Scholar 
                

	Benichou O, Voituriez R (2014) From first-passage times of random walks in confinement to geometry-controlled kinetics. Phys Rep 539:225–284
Article 
    MathSciNet 
    
                    Google Scholar 
                

	Berg HC (1983) Random walks in biology. Princeton University Press, Princeton

                    Google Scholar 
                

	Bressloff PC, Newby J (2013) Stochastic models of intracellular transport. Rev Mod Phys 85:135–196
Article 
    
                    Google Scholar 
                

	Bressloff PC, Earnshaw BA, Ward MJ (2008) Diffusion of protein receptors on a cylindrical dendritic membrane with partially absorbing traps. SIAM J Appl Math 68(5):1223–1246
Article 
    MathSciNet 
    MATH 
    
                    Google Scholar 
                

	Caginalp C, Chen X (2012) Analytical and numerical results for an escape problem. Arch Ration Mech Anal 203:329–342
Article 
    MathSciNet 
    MATH 
    
                    Google Scholar 
                

	Chen X, Friedman A (2011) Asymptotic analysis for the narrow escape problem. SIAM J Math Anal 43:2542–2563
Article 
    MathSciNet 
    MATH 
    
                    Google Scholar 
                

	Chevalier C, Benichou O, Meyer B, Voituriez R (2011) First passage quantities of Brownian motion in a bounded domain with multiple targets: a unified approach. J Phys A Math Theor 44:025002

	Cheviakov A, Ward MJ (2011) Optimizing the fundamental eigenvalue of the Laplacian in a sphere with interior traps. Math Comp Mode 53:1394–1409
Article 
    MathSciNet 
    MATH 
    
                    Google Scholar 
                

	Cobbold CA, Lutscher F (2014) Mean occupancy time: linking mechanistic movement models, population dynamics and landscape ecology to population persistence. J Math Biol 68(3):549–579
Article 
    MathSciNet 
    MATH 
    
                    Google Scholar 
                

	Condamin S, Benichou O, Moreau M (2007) Random walks and brownian motion: a method of computation of first-passage times and related quantities in confined geometries. Phys Rev E 75:021111

	Coombs D, Straube R, Ward MJ (2009) Diffusion on a sphere with localized traps: mean first passage time, eigenvalue asymptotics, and Fekete points. SIAM J Appl Math 70(1):302–332
Article 
    MathSciNet 
    MATH 
    
                    Google Scholar 
                

	Dijkstra W, Hochstenbach ME (2008) Numerical approximation of the logarithmic capacity, CASA Report 08-09, Technical U. Eindhoven (preprint)

	Dushek O, Coombs D (2008) Analysis of serial engagement and peptide-MHC transport in T cell receptor microclusters. Biophys J 94(9):3447–3460
Article 
    
                    Google Scholar 
                

	FlexPDE6, PDE Solutions Inc. http://www.pdesolutions.com
                        

	Frair J, Merrill E, Visscher D, Fortin D, Beyer H, Morales J (2005) Scales of movement by elk (Cervus elaphus) in response to heterogeneity in forage resources and predation risk. Landsc Ecol 20(3):273–287
Article 
    
                    Google Scholar 
                

	Gardiner C (2009) Stochastic methods, a handbook for the natural and social sciences, 4th edn. Springer, Berlin
MATH 
    
                    Google Scholar 
                

	Gurarie E, Ovaskainen O (2011) Characteristic spatial and temporal scales unify models of animal movement. Am Nat 178(1):113–123
Article 
    
                    Google Scholar 
                

	Gurarie E, Ovaskainen O (2013) Towards a general formalization of encounter rates in ecology. Theor Ecol 6(2):189–202
Article 
    
                    Google Scholar 
                

	Holcman D, Schuss Z (2014) The narrow escape problem. SIAM Rev 56(2):213–257
Article 
    MathSciNet 
    MATH 
    
                    Google Scholar 
                

	Holgate P (1971) Random walk models for animal behavior. In: Patil G, Pielou E, Waters W (eds) Stat Ecol, vol 2. Penn. State Univ. Press, pp 1–12

                    Google Scholar 
                

	Isaacson S, Newby J (2013) Uniform asymptotic approximation of diffusion to a small target. Phys Rev E 88:012820

	James A (1999) Effects of industrial development on the predator-prey relationship between wolves and caribou in Northeastern Alberta, Ph.D thesis, University of Alberta

	James A, Stuart-Smith A (2000) Distribution of caribou and wolves in relation to linear corridors. J Wildl Manag 64(1):154–159
Article 
    
                    Google Scholar 
                

	James A, Plank MJ, Brown R (2008) Optimizing the encounter rate in biological interactions: ballistic versus lévy versus Brownian strategies. Phys Rev E Stat Nonlinear Soft Matter Phys 78(1):051128
Article 
    
                    Google Scholar 
                

	James A, Pitchford JW, Plank MJ (2010) Efficient or inaccurate? Analytical and numerical modelling of random search strategies. Bull Math Biol 72(4):896–913
Article 
    MathSciNet 
    MATH 
    
                    Google Scholar 
                

	Kareiva P, Mullen A, Southwood R (1990) Population dynamics in spatially complex environments: theory and data and discussion. Phil Trans Biol Sci 330:175–190
Article 
    
                    Google Scholar 
                

	Kevorkian J, Cole J (1996) Multiple scale and singular perturbation methods, applied mathematical sciences, vol 114. Springer, New York
Book 
    
                    Google Scholar 
                

	Kolokolnikov T, Titcombe M, Ward MJ (2005) Optimizing the fundamental Neumann eigenvalue for the Laplacian in a domain with small traps. Eur J Appl Math 16(2):161–200
Article 
    MathSciNet 
    MATH 
    
                    Google Scholar 
                

	Lagache T, Holcman D (2008) Effective motion of a virus trafficking inside a biological cell. SIAM J Appl Math 68(4):1146–1167

	Lagache T, Holcman D (2008b) Quantifying the intermittent transport in the cell cytoplasm. Phys Rev E 77:030901(R)

	Lagache T, Dauty E, Holcman D (2009) Quantitative analysis of virus and plasmid trafficking in cells. Phys Rev E 79:011921
Article 
    
                    Google Scholar 
                

	Lima SL, Zollner PA (1996) Towards a behavioral ecology of ecological landscapes. Trends Ecol Evol 11(3):131–135
Article 
    
                    Google Scholar 
                

	McKenzie H, Lewis M, Merrill E (2009) First passage time analysis of animal movement and insights into the functional response. Bull Math Biol 71:107–129
Article 
    MathSciNet 
    MATH 
    
                    Google Scholar 
                

	McKenzie H, Merrill E, Spiteri R, Lewis M (2012) How linear features alter predator movement and the functional response. Interface Focus 2:205–216
Article 
    
                    Google Scholar 
                

	Moorcroft P, Lewis MA (2006) Mechanistic home range analysis. Princeton University Press, Princeton

                    Google Scholar 
                

	Okubo A, Levin S (1991) Diffusion and ecological problems. Springer, Berlin

                    Google Scholar 
                

	Pillay S, Ward MJ, Peirce A, Kolokolnikov T (2010) An asymptotic analysis of the mean first passage time for narrow escape problems: part I: two-dimensional domains. SIAM J. Multiscale Model Simul 8(3):803–835
Article 
    MathSciNet 
    MATH 
    
                    Google Scholar 
                

	Ransford T (1995) Potential theory in the complex plane, London Math. Soc. Stud. Texts 28. Cambridge University Press, Cambridge
Book 
    
                    Google Scholar 
                

	Redner S (2001) A guide to first-passage time processes. Cambridge University Press, Cambridge
Book 
    
                    Google Scholar 
                

	Singer A, Schuss Z (2007) Activation through a narrow opening. SIAM J Appl Math 68(1):98–108
Article 
    MathSciNet 
    MATH 
    
                    Google Scholar 
                

	Singer A, Schuss Z, Holcman D (2006) Narrow escape, part ii: the circular disk. J Stat Phys 122(3):465–489
Article 
    MathSciNet 
    MATH 
    
                    Google Scholar 
                

	Schuss Z (2010) Theory and applications of stochastic processes; an analytical approach, Applied Mathematical Sciences, vol 170. Springer, Berlin

	Schuss Z (2012) The narrow escape problem—a short review of recent results. J Sci Comput 53(1):194–210
Article 
    MathSciNet 
    MATH 
    
                    Google Scholar 
                

	Skellam J (1951) Random dispersal in theoretical populations. Biometrika 38:196–218
Article 
    MathSciNet 
    MATH 
    
                    Google Scholar 
                

	Straube R, Ward MJ, Falcke M (2007) Reaction-rate of small diffusing molecules on a cylindrical membrane. J Stat Phys 129(2):377–405
Article 
    MathSciNet 
    MATH 
    
                    Google Scholar 
                

	Stroud AH (1971) Approximate calculation of multiple integrals. Prentice-Hall, Englewood Cliffs
MATH 
    
                    Google Scholar 
                

	Taflia A, Holcman D (2007) Dwell time of a brownian molecule in a microdomain with traps and a small hole on the boundary. J Chem Phys 126:234107

	Titcombe M, Ward MJ (2000) An asymptotic study of oxygen transport from multiple capillaries to skeletal muscle tissue. SIAM J Appl Math 60(5):1767–1788
Article 
    MathSciNet 
    MATH 
    
                    Google Scholar 
                

	Tsaneva K, Burgo A, Galli T, Holcman D (2009) Modeling neurite growth. Biophys J 96(3):840–857
Article 
    
                    Google Scholar 
                

	Turchin P (1991) Translanting foraging movements in heterogeneous environments into the spatial distribution of foragers. Ecology 72(4):1253–1266
Article 
    
                    Google Scholar 
                

	Turchin P (1998) Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants. Sinauer Associates, Sunderland

                    Google Scholar 
                

	Tzou J, Kolokonikov T (2015) Mean first passage time for a small rotating trap inside a reflective disk. SIAM J Multiscale Model Simul (to appear)

	Ward MJ, Keller JB (1993) Strong localized perturbations of eigenvalue problems. SIAM J Appl Math 53(3):770–798
Article 
    MathSciNet 
    MATH 
    
                    Google Scholar 
                

	Ward MJ, Henshaw WD, Keller J (1993) Summing logarithmic expansions for singularly perturbed eigenvalue problems. SIAM J Appl Math 53(3):799–828
Article 
    MathSciNet 
    MATH 
    
                    Google Scholar 
                

	Whittington J, St Clair CC (2004) Path tortuosity and the permeability of roads and trails to wolf movement. Ecol Soc 9(1):4

                    Google Scholar 
                

	Whittington J, St Clair CC, Mercer G (2005) Spatial responses of wolves to roads and trails in mountain valleys. Ecol Appl 15:543–553
Article 
    
                    Google Scholar 
                


Download references




Acknowledgments
V.K. acknowledges support from the Pacific Institute for Mathematical Sciences International Graduate Training Center in Mathematical Biology. J.C.T. was supported by an AARMS (Atlantic Canada) Postdoctoral Fellowship. D.C. and M.J.W. gratefully acknowledge grant support from NSERC (Canada). We are grateful to an anonymous referee for helping clarify the result in Fig. 9.


Author information
Authors and Affiliations
	School of Computational Science and Engineering, McMaster University, Hamilton, ON, Canada
Venu Kurella

	Department of Mathematics and Statistics, Dalhousie University, Halifax, NS, Canada
Justin C. Tzou

	Institute of Applied Mathematics and Dept. of Mathematics, University of British Columbia, Vancouver, BC, Canada
Daniel Coombs & Michael J. Ward


Authors	Venu KurellaView author publications
You can also search for this author in
                        PubMed Google Scholar



	Justin C. TzouView author publications
You can also search for this author in
                        PubMed Google Scholar



	Daniel CoombsView author publications
You can also search for this author in
                        PubMed Google Scholar



	Michael J. WardView author publications
You can also search for this author in
                        PubMed Google Scholar





Corresponding author
Correspondence to
                Michael J. Ward.


Appendix: The Logarithmic Capacitance of a Two-Disk Cluster
Appendix: The Logarithmic Capacitance of a Two-Disk Cluster
We first derive the result (50) for the logarithmic capacitance \(d_{1c}\) of two disjoint circular patches \(\varOmega _{1,0}\) and \(\varOmega _{1,1}\) of radii \(a_0\) and \(a_1\), respectively. Since \(d_{1c}\) is invariant under coordinate rotations, we can without loss of generality choose the centers of the circles to lie along the horizontal \(y_2=0\) axis at some \(y_1=b_0>0\) and \(y_1=-b_1<0\), respectively.
For this special two-trap cluster, the inner problem (49) with \(\mathbf y =(y_1,y_2)\), is
$$\begin{aligned} \varDelta _\mathbf{y } q_c&= 0 , \quad \mathbf y \notin \varOmega _{1,j} , \quad j=0,1 \,; \quad q=0 , \quad \mathbf y \in \partial \varOmega _{1,j} , \quad j=0,1, \nonumber \\ q&\sim \log |\mathbf y | , \quad \hbox {as} \quad |\mathbf y |= (y_1^2+y_2^2)^{1/2} \rightarrow \infty , \end{aligned}$$

                    (75)
                

where \(\varOmega _{1,1}\) and \(\varOmega _{1,0}\) are the circles \((y_1+b_1)^2+y_2^2=a_1^2\) and \((y_1-b_0)^2+y_2^2=a_0^2\), respectively. The logarithmic capacitance \(d_{1c}\) of the two-circle cluster is defined in terms of the solution to (75) by the far-field condition
$$\begin{aligned} q_c - \log |\mathbf y | = -\log {d} + o(1) , \quad \hbox {as} \quad |\mathbf y |=(y_1^2+y_2^2)^{1/2} \rightarrow \infty . \end{aligned}$$

                    (76)
                

To solve (75), we introduce bipolar coordinates \(\xi \) and \(\eta \) defined by
$$\begin{aligned} y_1 = \frac{c \sinh \xi }{\cosh \xi -\cos \eta } , \quad y_2 = \frac{c \sin \eta }{\cosh \xi -\cos \eta } . \end{aligned}$$

                    (77)
                

Then, \(|\mathbf y |\rightarrow \infty \) corresponds to \(\rho \equiv (\xi ^2+\eta ^2)^{1/2}\rightarrow 0\). From (77), we obtain \(|\mathbf y |\sim {2c/\rho }\) as \(|\mathbf y |\rightarrow \infty \). Therefore, the far-field behavior in (75) is equivalent to \(q_c\sim -\log \rho \) as \(\rho =(\xi ^2+\eta ^2)^{1/2}\rightarrow 0\).
With bipolar coordinates, lines of constant \(\xi \) map to disks of the form \((y_1-y_{c})^2+y_2^2=a^2\), where \(y_c={c/\tanh \xi }\) and \(a={c/|\sinh \xi |}\). As such, the right circle \(\varOmega _{1,0}\) with center \(\mathbf y =(b_0,0)\) and radius \(a_0\) corresponds to \(\xi =\xi _0>0\), where
$$\begin{aligned} a_0 = {c/\sinh \xi _0} , \quad b_0 = {c/\tanh \xi _0} . \end{aligned}$$

                    (78)
                

In contrast, the left circle \(\varOmega _{1,1}\) with center \(\mathbf y =(-b_1,0)\) and radius \(a_1\) corresponds to \(\xi =-\xi _1<0\), so that \(\xi _1>0\), where
$$\begin{aligned} a_1 = {c/\sinh \xi _1} , \quad b_1 = {c/\tanh \xi _1} . \end{aligned}$$

                    (79)
                

We label the center-to-center distance between the two disks as \(l\), so that \(l=b_0+b_1\).
From (78) and (79), we obtain that \(\xi _0>0\), \(\xi _1>0\) and \(c\) are determined in terms of the disk radii \(a_0\) and \(a_1\), and the center-to-center distance \(l\), by the three equations
$$\begin{aligned} a_0={c/\sinh \xi _0} , \quad a_1={c/\sinh \xi _1} , \quad l = {c/\tanh \xi _0} + {c/\tanh \xi _1} . \end{aligned}$$

                    (80)
                

From this system, we readily derive that \(l = \sqrt{c^2 + a_0^2} + \sqrt{c^2 + a_1^2}\). By squaring this relation, we can solve for \(c\) in terms of \(l\) to obtain, after some algebra, that \(c\) is given by (51). With \(c\) known, \(\xi _0\) and \(\xi _1\) are obtained as in (52). We remark that, with \(c\) as given in (51), the centers of the two disks are at \(\mathbf y =(\sqrt{c^2+a_0^2},0)\) and \(\mathbf y =(-\sqrt{c^2+a_1^2},0)\).
Upon transforming (75) to bipolar coordinates, we obtain that \(Q(\xi ,\eta )\equiv q_c\left[ y_1(\xi ,\eta ),y_2(\xi ,\eta )\right] \) satisfies
$$\begin{aligned} Q_{\xi \xi } + Q_{\eta \eta }&= 0 , \quad -\xi _1\le \xi \le \xi _0 , \quad |\eta |\le \pi , \nonumber \\&\quad Q=0 \quad \hbox {on}\quad \xi =-\xi _1,\,\,\,\xi =\xi _0\,; \quad Q, Q_\eta \quad 2\pi \,\,\hbox {periodic in } \eta , \nonumber \\&\quad Q \sim -\frac{1}{2}\log \left( \xi ^2+\eta ^2\right) + {\mathcal O}(1) , \quad \hbox {as} \quad \xi ^2+\eta ^2 \rightarrow 0 . \end{aligned}$$

                    (81)
                

To solve (81), we first observe that a special solution to \(Q_{\xi \xi }+Q_{\eta \eta }=0\) with the singularity behavior in (81) is
$$\begin{aligned} Q_{f}(\xi ,\eta )\equiv -\frac{1}{2}\log \left( \cosh \xi -\cos \eta \right) = -\frac{|\xi |}{2} + \frac{\log {2}}{2} + \sum _{m=1}^{\infty } \frac{e^{-m|\xi |}}{m} \cos (m\eta ) . \quad \end{aligned}$$

                    (82)
                

We then decompose \(Q=Q_f+ Q_{p}\), so that \(Q_p\) satisfies \(\varDelta _\mathbf{y } Q_p=0\), is \(2\pi \) periodic in \(\eta \), and satisfies the boundary conditions
$$\begin{aligned} Q_{p}(\xi _0,\eta )&= \frac{\xi _0}{2} -\frac{\log {2}}{2} - \sum _{m=1}^{\infty } \frac{e^{-m\xi _0}}{m}\cos (m\eta ) , \nonumber \\ Q_{p}(-\xi _1,\eta )&= \frac{\xi _1}{2} -\frac{\log {2}}{2} - \sum _{m=1}^{\infty } \frac{e^{-m\xi _1}}{m}\cos (m\eta ) . \end{aligned}$$

                    (83)
                

To determine \(Q_p\), we first represent \(Q_p\) as a Fourier cosine series in \(\cos (m\eta )\) and then use the boundary conditions (83) to identify the coefficients in the Fourier series. In this way, we obtain that 
$$\begin{aligned} Q_p(\xi ,\eta ) =C_0 + D_0 \xi + \sum _{m=1}^{\infty } \left[ C_m \cosh (m\xi ) + D_m \sinh (m\xi )\right] \cos (m\eta ) , \end{aligned}$$

                    (84a)
                

where
$$\begin{aligned} C_0&= -\frac{\log {2}}{2} + \frac{\xi _0\xi _1}{\xi _0+\xi _1}\nonumber \\ C_m&= -\frac{ \left[ e^{-m\xi _0}\sinh (m\xi _1)+e^{-m\xi _1}\sinh (m\xi _0)\right] }{m \sinh \left[ m(\xi _0+\xi _1)\right] } , \quad \hbox {for} \quad m\ge 1, \end{aligned}$$

                    (84b)
                

 with similar formulae for the coefficients \(D_m\) for \(m\ge 0\).
Finally, to identify the logarithmic capacitance \(d_{1c}\) of the cluster, we expand \(Q=Q_f+Q_p\) as \((\xi ,\eta )\rightarrow 0\) to obtain
$$\begin{aligned} Q \sim -\frac{1}{2}\log \left( \frac{\xi ^2+\eta ^2}{2}\right) + Q_{p}(0,0) . \end{aligned}$$

                    (85)
                

Since \(\xi ^2+\eta ^2\sim {4c^2/|\mathbf y |^2}\) from (77), we obtain from (85) that
$$\begin{aligned} q_c \sim \log |\mathbf y | - \log \left( 2\sqrt{c}\right) + Q_p(0,0) , \quad \hbox {as} \quad |\mathbf y |\rightarrow \infty . \end{aligned}$$

                    (86)
                

From this relation, together with \(Q_{p}(0,0)=\sum _{m=0}^{\infty } C_m\) from (83), we identify \(d_{1c}\) in (76) as
$$\begin{aligned} \log {d_{1c}} = \log \left( 2 c\right) - \frac{\xi _0\xi _1}{\xi _0+\xi _1} - \sum _{m=1}^{\infty } C_m, \end{aligned}$$

                    (87)
                

where \(C_m\) for \(m\ge 1\) is given in (84b). This completes the derivation of (50).
Next, we derive (53) for \(q^{\star }_{\infty }\) by first transforming (48) to bipolar coordinates. In this way, we obtain that \(Q^{\star }(\xi ,\eta )\equiv q^{\star }\left[ y_1(\xi ,\eta ),y_2(\xi ,\eta )\right] \) is the smooth function that satisfies
$$\begin{aligned} Q^{\star }_{\xi \xi } + Q^{\star }_{\eta \eta }&= 0 , \quad -\xi _1\le \xi \le \xi _0 , \quad |\eta |\le \pi , \nonumber \\ Q^{\star }=0 \quad \hbox {on}\quad \xi&= -\xi _1\,; \quad Q^{\star }=1 \quad \hbox {on}\quad \xi =\xi _0\,; \quad Q^{\star }, Q^{\star }_\eta \quad 2\pi \,\, \hbox {periodic in } \eta .\nonumber \\ \end{aligned}$$

                    (88)
                

The solution to this problem is simply \(Q^{\star }={(\xi +\xi _1)/(\xi _0+\xi _1)}\). Since \(r\rightarrow \infty \) as \((\xi ,\eta )\rightarrow 0\), we readily identify the far-field behavior in (48) as \(q^{\star }_{\infty }=Q^{\star }(0,0)={\xi _1/(\xi _0+\xi _1)}\), which confirms (53).
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