Skip to main content
Log in

Mathematical Modelling of the Phloem: The Importance of Diffusion on Sugar Transport at Osmotic Equilibrium

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Plants rely on the conducting vessels of the phloem to transport the products of photosynthesis from the leaves to the roots, or to any other organs, for growth, metabolism, and storage. Transport within the phloem is due to an osmotically-generated pressure gradient and is hence inherently nonlinear. Since convection dominates over diffusion in the main bulk flow, the effects of diffusive transport have generally been neglected by previous authors. However, diffusion is important due to boundary layers that form at the ends of the phloem, and at the leaf-stem and stem-root boundaries. We present a mathematical model of transport which includes the effects of diffusion. We solve the system analytically in the limit of high Münch number which corresponds to osmotic equilibrium and numerically for all parameter values. We find that the bulk solution is dependent on the diffusion-dominated boundary layers. Hence, even for large Péclet number, it is not always correct to neglect diffusion. We consider the cases of passive and active sugar loading and unloading. We show that for active unloading, the solutions diverge with increasing Péclet. For passive unloading, the convergence of the solutions is dependent on the magnitude of loading. Diffusion also permits the modelling of an axial efflux of sugar in the root zone which may be important for the growing root tip and for promoting symbiotic biological interactions in the soil. Therefore, diffusion is an essential mechanism for transport in the phloem and must be included to accurately predict flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barbaroux C, Bréda N, Dufrêne E (2003) Distribution of above-ground and below-ground carbohydrate reserves in adult trees of two contrasting broad-leaved species (Quercus petraea and Fagus sylvatica). New Phytol 157(3):605–615

    Article  Google Scholar 

  • Bingham IJ, Stevenson EA (1993) Control of root growth: effects of carbohydrates on the extension, branching and rate of respiration of different fractions of wheat roots. Physiol Plant 88(1):149–158

    Article  Google Scholar 

  • De Schepper V, De Swaef T, Bauwerarts I, Steppe K (2013) Phloem transport: a review of mechanisms and controls. J Exp Bot 64(16):4839–4850

    Article  Google Scholar 

  • Dilkes NB, Jones DL, Farrar J (2004) Temporal dynamics of carbon partitioning and rhizodeposition in wheat. Plant Physiol 134(2):706–715

    Article  Google Scholar 

  • Fernández V, Brown PH (2013) From plant surface to plant metabolism: the uncertain fate of foliar-applied nutrients. Front Plant Sci 4(289)

  • Hall AJ, Minchin PEH (2013) A closed-form solution for steady-state coupled phloem/xylem flow using the Lambert-W function. Plant Cell Environ 36(12):2150–2162

    Article  Google Scholar 

  • Hinch EJ (1991) Perturbation methods, vol 6. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Hölttä T, Vesala T, Sevanto S, Perämäki M, Nikinmaa E (2006) Modeling xylem and phloem water flows in trees according to cohesion theory and Münch hypothesis. Trees 20(1):67–78

    Article  Google Scholar 

  • Jensen KH, Rio E, Hansen R, Clanet C, Bohr T (2009) Osmotically driven pipe flows and their relation to sugar transport in plants. J Fluid Mech 636:371–396

    Article  MATH  Google Scholar 

  • Jensen KH, Lee J, Bohr T, Bruus H, Holbrook NM, Zwieniecki MA (2011) Optimality of the Münch mechanism for translocation of sugars in plants. J R Soc Interface 8(61):1155–1165

    Article  Google Scholar 

  • Jensen KH, Berg-Sørensen K, Friis SM, Bohr T (2012) Analytic solutions and universal properties of sugar loading models in Münch phloem flow. J Theor Biol 304:286–296

    Article  Google Scholar 

  • Jensen KH, Savage JA, Holbrook NM (2013) Optimal concentration for sugar transport in plants. J R Soc Interface 10(83):0055

  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils, Chapter 2. Academic Press, San Diego

    Google Scholar 

  • Kutschera L, Lichtenegger E, Sobotik M (2009) Wurzelatlas der Kulturpflanzen gemigter Gebiete mit Arten des Feldgemsebaues. DLG -Verlag, Frankfurt

    Google Scholar 

  • Lacointe A, Minchin PEH (2008) Modelling phloem and xylem transport within a complex architecture. Funct Plant Biol 35(10):772–780

    Article  Google Scholar 

  • Minchin PEH, Thorpe MR (1987) Measurement of unloading and reloading of photo-assimilate within the stem of bean. J Exp Bot 38(117):211–220

    Article  Google Scholar 

  • Minchin PEH, Thorpe MR (1996) What determines carbon partitioning between competing sinks? J Exp Bot 47:1293–1296

    Article  Google Scholar 

  • Münch E (1926) Über Dynamik der Saftströmungen. Deut Bot Ges 44:68–71

    Google Scholar 

  • Patrick JW (1997) Phloem unloading: sieve element unloading and post-sieve element transport. Annu Rev Plant Physiol 48(1):191–222

    Article  Google Scholar 

  • Payvandi S, Daly KR, Jones DL, Talboys P, Zygalakis KC, Roose T (2014) A mathematical model of water and nutrient transport in xylem vessels of a wheat plant. Bull Math Biol 76(3):566–596

    Article  MathSciNet  MATH  Google Scholar 

  • Phillips RJ, Dungan SR (1993) Asymptotic analysis of flow in sieve tubes with semi-permeable walls. J Theor Biol 162(4):465–485

  • Pickard WF, Abraham-Shrauner B (2009) A simplest steady–state Münch-like model of phloem translocation, with source and pathway and sink. Funct Plant Biol 36(7):629–644

    Article  Google Scholar 

  • Rawson HM, Evans LT (1971) The contribution of stem reserves to grain development in a range of wheat cultivars of different height. Aust J Agric Res 22(6):851–863

    Article  Google Scholar 

  • Thompson MV, Holbrook NM (2003a) Application of a single-solute non-steady-state phloem model to the study of long-distance assimilate transport. J Theor Biol 220(4):419–455

    Article  Google Scholar 

  • Thompson MV, Holbrook NM (2003b) Scaling phloem transport: water potential equilibrium and osmoregulatory flow. Plant Cell Environ 26(9):1561–1577

    Article  Google Scholar 

  • Thompson MV, Holbrook NM (2004) Scaling phloem transport: information transmission. Plant Cell Environ 27(4):509–519

    Article  Google Scholar 

  • Thompson MV (2005) Scaling phloem transport: elasticity and pressure-concentration waves. J Theor Biol 236(3):229–241

    Article  Google Scholar 

  • Turgeon R (2010) The role of phloem loading reconsidered. Plant Physiol 152(4):1817–1823

    Article  Google Scholar 

  • van Bel AJE (2003) The phloem, a miracle of ingenuity. Plant Cell Environ 26(1):125–149

    Article  Google Scholar 

Download references

Acknowledgments

This work was sponsored by Defra, BBSRC (BB/J000868/1), Scottish Government, AHDB, and other industry partners through Sustainable Arable LINK Project LK09136 and the BBSRC (BB/I024283/1). Tiina Roose is funded by a Royal Society University Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Payvandi.

Appendices

Appendix A: Scaled Equations and Boundary Conditions

The scaled fluid transport and concentration transport equations are

$$\begin{aligned}&\epsilon ^{1+\delta -\beta }\frac{\hbox {d}^2\bar{w}^i}{\hbox {d}z^2}=\epsilon ^{\delta -\beta }\bar{w}^i-\bar{H}\frac{\hbox {d}c^i}{\hbox {d}z},\end{aligned}$$
(44)
$$\begin{aligned}&\epsilon ^{\delta -\chi }\frac{\hbox {d}c^i}{\hbox {d}z}\bar{w}^i+\epsilon ^{\delta -\chi }c^i\frac{\hbox {d}\bar{w}^i}{\hbox {d}z}+\frac{1}{\bar{\hbox {Pe}}}\frac{\hbox {d}^2c^i}{\hbox {d}z^2}=-\epsilon ^{\gamma -\chi }\bar{F}^i, \end{aligned}$$
(45)

in the bulk regions. In the leaf, stem, and root zones, the left-hand-side boundaries are \(z=0\), \(z=z_1\), and \(z=z_2\), respectively, and we rewrite \(z\) in terms of a boundary layer variable \(x^i\) as; \(z=\epsilon ^{\alpha }x^L\) in the leaf, \(z=z_1+\epsilon ^{\alpha }x^S\) in the stem, and \(z=z_2+\epsilon ^{\alpha }x^R\) in the root. Therefore, the equations in the LHS boundary region are

$$\begin{aligned}&\epsilon ^{1-\alpha +\delta -\beta }\frac{\hbox {d}^2\bar{w}^i}{\hbox {d}x^{i\,2}}=\epsilon ^{\delta +\alpha -\beta }\bar{w}^i-\bar{H}\frac{\hbox {d}c^i}{\hbox {d}x^i},\end{aligned}$$
(46)
$$\begin{aligned}&\epsilon ^{\alpha +\delta -\chi }\frac{\hbox {d}c^i}{\hbox {d}x^i}\bar{w}^i+\epsilon ^{\alpha +\delta -\chi }c^i\frac{\hbox {d}\bar{w}^i}{\hbox {d}x^i}+\frac{1}{\bar{\hbox {Pe}}}\frac{\hbox {d}^2c^i}{\hbox {d}x^{i\,2}}=-\epsilon ^{\gamma +2\alpha -\chi }\bar{F}^i. \end{aligned}$$
(47)

In the leaf, stem, and root zones, the right-hand-side boundaries, respectively, are \(z=z_1\), \(z=z_2\), and \(z=1\), and we rewrite \(z\) in terms of a boundary layer variable \(y^i\) as; \(z=z_1-\epsilon ^{\alpha }y^L\) in the leaf, \(z=z_2-\epsilon ^{\alpha }y^S\) in the stem, and \(z=1-\epsilon ^{\alpha }y^R\) in the root. Therefore, the RHS boundary region equations are

$$\begin{aligned}&\epsilon ^{1-\alpha +\delta -\beta }\frac{\hbox {d}^2\bar{w}^i}{\hbox {d}y^{i\,2}}=\epsilon ^{\delta +\alpha -\beta }\bar{w}^i+\bar{H}\frac{\hbox {d}c^i}{\hbox {d}y^i},\end{aligned}$$
(48)
$$\begin{aligned}&-\epsilon ^{\alpha +\delta -\chi }\frac{dc^i}{dy^i}\bar{w}^i-\epsilon ^{\alpha +\delta -\chi }c^i\frac{d\bar{w}^i}{dy^i}+\frac{1}{\bar{Pe}}\frac{d^2c^i}{dy^{i\,2}}=-\epsilon ^{\gamma +2\alpha -\chi }\bar{F}^i. \end{aligned}$$
(49)

The boundary conditions at \(z=0\) and \(z=1\) become

$$\begin{aligned} \bar{w}^L&= 0,\qquad c^L=\phi ,\qquad \text {at}\qquad x^L=0,\end{aligned}$$
(50)
$$\begin{aligned} \bar{w}^R&= 0,\qquad \frac{\hbox {d}c^R}{\hbox {d}y^R}=\epsilon ^{\gamma +\alpha -\chi }\bar{\hbox {Pe}}\bar{f} \qquad \text {at}\qquad y^R=0. \end{aligned}$$
(51)

The continuity conditions at the leaf-stem boundary are

$$\begin{aligned}&c^L=c^S,\qquad \epsilon ^{\delta }\bar{w}^L=\epsilon ^{\delta }\bar{w}^S,\end{aligned}$$
(52)
$$\begin{aligned}&\epsilon ^{\delta }c^L\bar{w}^L+\frac{\epsilon ^{\chi }}{\bar{\hbox {Pe}}}\frac{\hbox {d}c^L}{\hbox {d}z}=\epsilon ^{\delta }c^S\bar{w}^S+\frac{\epsilon ^{\chi }}{\bar{\hbox {Pe}}}\frac{\hbox {d}c^S}{\hbox {d}z},\qquad \epsilon ^{\delta }\frac{\hbox {d}\bar{w}^L}{\hbox {d}z}=\epsilon ^{\delta }\frac{\hbox {d}\bar{w}^S}{\hbox {d}z}. \end{aligned}$$
(53)

The continuity conditions at the stem-root boundary are

$$\begin{aligned}&c^S=c^R,\qquad \epsilon ^{\delta }\bar{w}^S=\epsilon ^{\delta }\bar{w}^R,\end{aligned}$$
(54)
$$\begin{aligned}&\epsilon ^{\delta }c^S\bar{w}^S+\frac{\epsilon ^{\chi }}{\bar{\hbox {Pe}}}\frac{\hbox {d}c^S}{\hbox {d}z}=\epsilon ^{\delta }c^R\bar{w}^R+\frac{\epsilon ^{\chi }}{\bar{\hbox {Pe}}}\frac{\hbox {d}c^R}{\hbox {d}z},\qquad \epsilon ^{\delta }\frac{\hbox {d}\bar{w}^S}{\hbox {d}z}=\epsilon ^{\delta }\frac{\hbox {d}\bar{w}^R}{\hbox {d}z}. \end{aligned}$$
(55)

Appendix B: Analytical Solution Procedure

Here, we give the procedure to determine \(c^i\) and \(\bar{w}^i\) at \(O(\epsilon ^0)\) and \(O(\epsilon ^{\frac{1}{2}})\). The overall method involves solving the fluid transport and concentration transport equations in each region, applying the boundary conditions at \(z=0\) and \(z=1\), matching the solutions across the regions to obtain composite solutions in each zone, and finally applying continuity conditions at \(z=z_1\) and \(z=z_2\) to fully determine the solutions. We start at Region 1 which is in the leaf zone.

1.1 Region 1

This region represents the LHS boundary layer in the leaf zone. The solution in Region 1 has to match to the solution in Region 2 and also satisfy the boundary conditions

$$\begin{aligned}&c_0^L+\epsilon ^{\frac{1}{2}}c_1^L+\epsilon c_2^L+O(\epsilon ^{\frac{3}{2}})=\phi ,\qquad \text { at } x^L=0 \end{aligned}$$
(56)
$$\begin{aligned}&\bar{w}_0^L+\epsilon ^{\frac{1}{2}}\bar{w}_1^L+\epsilon \bar{w}_2^L+O(\epsilon ^{\frac{3}{2}})=0,\qquad \text { at } x^L=0. \end{aligned}$$
(57)

The \(O(\epsilon ^0)\) terms of Eqs. (21) and (22) are

$$\begin{aligned} -\bar{H}\frac{\hbox {d}c_0^L}{\hbox {d}x^L}=0,\qquad \frac{1}{\bar{\hbox {Pe}}}\frac{\hbox {d}^2c_0^L}{\hbox {d}x^{L\,2}}=0, \end{aligned}$$
(58)

and applying the boundary condition (56), the solution for \(c_0^L\) in Region 1 is \(c_0^L=\phi \). The \(O(\epsilon ^\frac{1}{2})\) terms of Eqs. (21) and (22) are

$$\begin{aligned} -\bar{H}\frac{\hbox {d}c_1^L}{\hbox {d}x^L}=0,\qquad \frac{1}{\bar{\hbox {Pe}}}\frac{\hbox {d}^2c_1^L}{\hbox {d}x^{L\,2}}=0, \end{aligned}$$
(59)

and applying the boundary condition (56), the solution for \(c_1^L\) in Region 1 is \(c_1^L=0\). The \(O(\epsilon )\) terms of Eqs. (21) and (22) are

$$\begin{aligned}&\frac{\hbox {d}^2\bar{w}_0^L}{\hbox {d}x^{L\,2}}=\bar{w}_0^L-\bar{H}\frac{\hbox {d}c_2^L}{\hbox {d}x^L},\end{aligned}$$
(60)
$$\begin{aligned}&\frac{\hbox {d}c_0^L}{\hbox {d}x^L}\bar{w}_0^L+c_0^L\frac{\hbox {d}\bar{w}_0^L}{\hbox {d}x^L}+\frac{1}{\bar{\hbox {Pe}}}\frac{\hbox {d}^2c_2^L}{\hbox {d}x^{L\,2}}=0, \end{aligned}$$
(61)

and substituting \(c_0^L=\phi \) into (61) and integrating, we obtain \(\tfrac{\mathrm{{d}}c_2^L}{\mathrm{{d}}x^L}=-\bar{\hbox {Pe}}\phi \bar{w}_0^L+k_1\) where \(k_1\) is an unknown constant. Substituting back into (60) yields

$$\begin{aligned} \frac{\hbox {d}^2\bar{w}_0^L}{\hbox {d}x^{L\,2}}=\bar{w}_0^L\left( 1+\bar{H}\bar{\hbox {Pe}}\phi \right) -\bar{H}k_1. \end{aligned}$$
(62)

Solving (62), applying the boundary condition (57), and neglecting any exponentially growing terms, we obtain

$$\begin{aligned} \bar{w}_0^L=\frac{k_1\bar{H}}{1+\bar{H}\bar{\hbox {Pe}}\phi }\left( 1-\hbox {e}^{-\sqrt{1+\bar{H}\bar{\hbox {Pe}}\phi }x^L}\right) . \end{aligned}$$
(63)

The constant \(k_1\) can only be determined by applying continuity conditions between the plant zones but this can only occur once the composite solution is determined for the entirety of the leaf zone. We therefore proceed to Region 2 where we repeat this solution procedure.

1.2 Region 2

This region represents the central bulk of the leaf zone, and the solution in this region has to match to both the solution in Region 1 and Region 3. The \(O(\epsilon ^0)\) terms of Eqs.  (19) and (20) are

$$\begin{aligned} -\bar{H}\frac{\hbox {d}c_0^L}{\hbox {d}z}=0,\qquad \frac{1}{\bar{\hbox {Pe}}}\frac{\hbox {d}^2c_0^L}{\hbox {d}z^2}=0, \end{aligned}$$
(64)

such that \(c_0^L\) in Region 2 is a constant, which upon matching to Region 1 gives \(c_0^L=\phi \). The \(O(\epsilon ^{\frac{1}{2}})\) terms of Eqs. (19) and (20) are

$$\begin{aligned} 0=\bar{w}_0^L-\bar{H}\frac{\hbox {d}c_1^L}{\hbox {d}z},\qquad \frac{\hbox {d}c_0^L}{\hbox {d}z}\bar{w}_0^L+c_0^L\frac{\hbox {d}\bar{w}_0^L}{\hbox {d}z}+\frac{1}{\bar{\hbox {Pe}}}\frac{\hbox {d}^2c_1^L}{\hbox {d}z^2}=-\bar{F}^L_0, \end{aligned}$$
(65)

where \(\bar{F}^L_0=\bar{\eta }^Lc^L_0+\bar{\sigma }^L\). Substituting \(c_0^L=\phi \), solving Eq. (65), and matching to the solution in Region 1, we find

$$\begin{aligned}&c_1^L=\frac{\bar{\hbox {Pe}}}{\bar{H}\bar{\hbox {Pe}}\phi +1}\left( -\bar{F}^L_0\frac{z^2}{2}+\frac{k_1}{\bar{\hbox {Pe}}} z\right) ,\end{aligned}$$
(66)
$$\begin{aligned}&\bar{w}_0^L=\frac{\bar{H}\bar{\hbox {Pe}}}{\bar{H}\bar{\hbox {Pe}}\phi +1}\left( -\bar{F}^L_0z+\frac{k_1}{\bar{\hbox {Pe}}}\right) . \end{aligned}$$
(67)

1.3 Region 3

This region represents the RHS boundary layer in the leaf zone. The solution in Region 3 has to match to the solution in Region 2 and satisfy continuity conditions at \(z=z_1\). The \(O(\epsilon ^0)\) terms of Eqs. (23) and (24) are

$$\begin{aligned} \bar{H}\frac{\hbox {d}c_0^L}{\hbox {d}y^L}=0,\qquad \frac{1}{\bar{\hbox {Pe}}}\frac{\hbox {d}^2c_0^L}{\hbox {d}y^{L\,2}}=0, \end{aligned}$$
(68)

such that \(c_0^L\) in Region 3 is a constant, which upon matching to Region 2 gives \(c_0^L=\phi \). The \(O(\epsilon ^{\frac{1}{2}})\) terms of Eqs. (23) and (24) are

$$\begin{aligned} \bar{H}\frac{\hbox {d}c_1^L}{\hbox {d}y^L}=0,\qquad \frac{1}{\bar{\hbox {Pe}}}\frac{\hbox {d}^2c_1^L}{\hbox {d}y^{L\,2}}=0, \end{aligned}$$
(69)

which indicates that \(c_1^L\) in Region 3 is a constant and we let \(c_1^L=B^L_1\), where \(B^L_1\) is an unknown constant. The \(O(\epsilon )\) terms of Eqs. (23) and (24) are

$$\begin{aligned}&\frac{\hbox {d}^2\bar{w}_0^L}{\hbox {d}y^{L\,2}}=\bar{w}_0^L+\bar{H}\frac{\hbox {d}c_2^L}{\hbox {d}y^L},\end{aligned}$$
(70)
$$\begin{aligned} -&\frac{\hbox {d}c_0^L}{\hbox {d}y^L}\bar{w}_0^L-c_0^L\frac{\hbox {d}\bar{w}_0^L}{\hbox {d}y^L}+\frac{1}{\bar{\hbox {Pe}}}\frac{\hbox {d}^2c_2^L}{\hbox {d}y^{L\,2}}=0, \end{aligned}$$
(71)

and substituting \(c_0^L=\phi \) into (71) and integrating, we obtain \(\tfrac{\mathrm{d}c_2^L}{\mathrm{d}y^L}=-\bar{\hbox {Pe}}\phi \bar{w}_0^L+B^L_2\) where \(B^L_2\) is an unknown constant. Substituting back into (70) yields

$$\begin{aligned} \frac{\hbox {d}^2\bar{w}_0^L}{\hbox {d}y^{L\,2}}=\bar{w}_0^L\left( 1+\bar{H}\bar{\hbox {Pe}}\phi \right) +\bar{H}B^L_2. \end{aligned}$$
(72)

Solving for \(\bar{w}_0^L\) and neglecting any exponentially growing terms, we obtain

$$\begin{aligned} \bar{w}_0^L=A_1\hbox {e}^{-\sqrt{1+\bar{H}\bar{\hbox {Pe}}\phi }y^L}-\frac{\bar{H}B^L_2}{\bar{H}\bar{\hbox {Pe}}\phi +1}. \end{aligned}$$
(73)

Matching to Region 2 gives

$$\begin{aligned} B^L_1=\frac{\bar{\hbox {Pe}}}{\bar{H}\bar{\hbox {Pe}}\phi +1}\left( -\frac{\bar{F}^L_0z_1^2}{2}+\frac{k_1}{\bar{\hbox {Pe}}}z_1\right) ,\qquad B^L_2=\bar{\hbox {Pe}}\bar{F}^L_0z_1-k_1. \end{aligned}$$
(74)

Combining the solutions for \(c\) and \(\bar{w}\) for all three regions within the leaf zone, we obtain the following composite solution for the leaf zone

$$\begin{aligned} c_0^L&=\phi ,\end{aligned}$$
(75)
$$\begin{aligned} c_1^L&=\frac{\bar{\hbox {Pe}}}{\kappa }\left( -\bar{F}^L_0\frac{z^2}{2}+\frac{k_1}{\bar{\hbox {Pe}}}z\right) ,\end{aligned}$$
(76)
$$\begin{aligned} \bar{w}_0^L&=\frac{\bar{H}\bar{\hbox {Pe}}}{\kappa }\left( -\bar{F}^L_0z+\frac{k_1}{\bar{\hbox {Pe}}}\left( 1-\hbox {e}^{-\sqrt{\kappa }\epsilon ^{-\frac{1}{2}}z}\right) \right) +A_1\hbox {e}^{-\sqrt{\kappa }\epsilon ^{-\frac{1}{2}}(z_1-z)}, \end{aligned}$$
(77)

where \(\kappa =\bar{H}\bar{\hbox {Pe}}\phi +1\) and where \(k_1\) and \(A_1\) are unknown constants to be determined by applying continuity conditions at the zone boundaries. Before continuity can be applied, we first calculate the stem and root composite solutions. For brevity, we do not show the details here, but we do use the same procedure outlined in sections Region 1, Region 2, and Region 3 for the leaf zone.

1.4 Applying Continuity Conditions

Solving at \(O(\epsilon ^0)\) in the remaining six regions, we determine that \(c_0\) is constant everywhere. Assuming that \(c_0\) is continuous across the zone boundaries, we find that \(c_0^i=\phi \) for all nine regions. Solving at the next order, \(O(\epsilon ^\frac{1}{2})\), we find the following composite solutions in the stem and root zones

$$\begin{aligned} c_1^S&=\frac{\bar{\hbox {Pe}}}{\kappa }\left( -\bar{F}^S_0\frac{z^2}{2}+k_2z+k_3\right) ,\end{aligned}$$
(78)
$$\begin{aligned} \bar{w}_0^S&=\frac{\bar{H}\bar{\hbox {Pe}}}{\kappa }\left( -\bar{F}^S_0z+k_2\right) +A_2\hbox {e}^{-\sqrt{\kappa }\epsilon ^{-\frac{1}{2}}(z-z_1)}+A_3\hbox {e}^{-\sqrt{\kappa }\epsilon ^{-\frac{1}{2}}(z_2-z),}\end{aligned}$$
(79)
$$\begin{aligned} c_1^R&=\frac{\bar{\hbox {Pe}}}{\kappa }\left( -\bar{F}^R_0\frac{z^2}{2}+(\bar{F}^R-\bar{f})z+k_4\right) ,\end{aligned}$$
(80)
$$\begin{aligned} \bar{w}_0^R&=\frac{\bar{H}\bar{\hbox {Pe}}}{\kappa }\left( -\bar{F}^R_0z+(\bar{F}^R_0-\bar{f})\right) +\frac{\bar{H}\bar{\hbox {Pe}}\bar{f}}{\kappa }\hbox {e}^{-\sqrt{\kappa }\epsilon ^{-\frac{1}{2}}(1-z)}+A_4\hbox {e}^{-\sqrt{\kappa }\epsilon ^{-\frac{1}{2}}(z-z_2)}, \end{aligned}$$
(81)

where \(k_1\), \(k_2\), \(k_3\), \(k_4\), \(A_1\), \(A_2\), \(A_3\), \(A_4\) are unknown constants to be determined from applying continuity boundary conditions.

As can be seen, the solutions for \(\bar{w}_0^i\) contain exponential terms due to the boundary layer terms. This implies that terms of a higher order (for example \(c_2^i\) and \(\bar{w_1}^i\)) can contribute to the flux continuity conditions due to the presence of \(\epsilon ^{-\frac{1}{2}}\) within the exponential. For example, if we write

$$\begin{aligned} \bar{w}^i=\bar{w}^{i,\mathrm{bulk}}+\bar{w}^{i,\mathrm{exp}}\hbox {e}^{\epsilon ^{-\frac{1}{2}}f(z)},\qquad c^i=c^{i,\mathrm{bulk}}+c^{i,\mathrm{exp}}\hbox {e}^{\epsilon ^{-\frac{1}{2}}f(z)}, \end{aligned}$$
(82)

where \(f(z)\) refers to a function of \(z\), then the derivatives, \(\frac{\mathrm{{d}}\bar{w}^i}{\mathrm{{d}}z}\) and \(\frac{\mathrm{{d}}c^i}{\mathrm{{d}}z}\), which appear in the flux continuity conditions become

$$\begin{aligned} \frac{\hbox {d}\bar{w}^i}{\hbox {d}z}&=\epsilon ^{-\frac{1}{2}}\left( \frac{\hbox {d}f_0}{\hbox {d}z}\bar{w}_0^{i,\mathrm{exp}}\hbox {e}^{\epsilon ^{-\frac{1}{2}}f_0}\right) \nonumber \\&\quad +\,\epsilon ^0\left( \frac{\hbox {d}\bar{w}_0^{i,\mathrm{bulk}}}{\hbox {d}z}+\frac{\hbox {d}\bar{w}_0^{i,\mathrm{exp}}}{\hbox {d}z}\hbox {e}^{\epsilon ^{-\frac{1}{2}}f_0}+\frac{\hbox {d}f_1}{\hbox {d}z}\bar{w}_1^{i,\mathrm{exp}}\hbox {e}^{\epsilon ^{-\frac{1}{2}}f_1}\right) +O(\epsilon ^{\frac{1}{2}}),\end{aligned}$$
(83)
$$\begin{aligned} \frac{\hbox {d}c^i}{\hbox {d}z}&=\epsilon ^{-\frac{1}{2}}\left( \frac{\hbox {d}f_0}{\hbox {d}z}c_0^{i,\mathrm{exp}}\hbox {e}^{\epsilon ^{-\frac{1}{2}}f_0}\right) \nonumber \\&\quad +\,\epsilon ^0\left( \frac{\hbox {d}c_0^{i,\mathrm{bulk}}}{\hbox {d}z}+\frac{\hbox {d}c_0^{i,\mathrm{exp}}}{\hbox {d}z}\hbox {e}^{\epsilon ^{-\frac{1}{2}}f_0}+\frac{\hbox {d}f_1}{\hbox {d}z}c_1^{i,\mathrm{exp}}\hbox {e}^{\epsilon ^{-\frac{1}{2}}f_1}\right) +O(\epsilon ^{\frac{1}{2}}). \end{aligned}$$
(84)

Since \(c_0^{i,\mathrm{exp}}=c_1^{i,\mathrm{exp}}=0\) and \(\tfrac{\mathrm{{d}}c_0^{i,\mathrm{bulk}}}{\mathrm{{d}}z}=0\), the first contribution to \(\tfrac{\mathrm{d}c^i}{\mathrm{d}z}\) is at \(O(\epsilon ^{\frac{1}{2}})\). The consequence of this is that the exponential terms of \(c_2^i\) first have to be calculated before continuity conditions can be applied and \(c_1^i\) and \(\bar{w}_0^i\) can be fully determined.

Solving for \(c_2^i\) in all the Regions using the same procedure as in Region 1, Region 2 and Region 3, and then applying the continuity conditions, we find

$$\begin{aligned} k_1&= \bar{\hbox {Pe}}\left( z_1\left( \bar{F}^L_0-\bar{F}^S_0\right) +z_2\left( \bar{F}^S_0-\bar{F}^R_0\right) +\bar{F}^R_0-\bar{f}\right) ,\end{aligned}$$
(85)
$$\begin{aligned} k_2&= z_2(\bar{F}^S_0-\bar{F}^R_0)+\bar{F}^R_0-\bar{f},\end{aligned}$$
(86)
$$\begin{aligned} k_3&= \frac{z_1^2}{2}\left( \bar{F}^L_0-\bar{F}^S_0\right) ,\end{aligned}$$
(87)
$$\begin{aligned} k_4&= \frac{z_2^2}{2}\left( \bar{F}^S_0-\bar{F}^R_0\right) +\frac{z_1^2}{2}\left( \bar{F}^L_0-\bar{F}^S_0\right) ,\end{aligned}$$
(88)
$$\begin{aligned} A_1&= A_2=A_3=A_4=0, \end{aligned}$$
(89)

indicating that, at this order, there are no boundary layer terms near \(z_1\) and \(z_2\). Finally, we calculate the exponential terms of \(c_3^i\) in all Regions to fully determine \(c_2^i\) and \(\bar{w}_1^i\), the solutions of which are given in Appendix . At this order, we find that boundary layer terms are non-zero at \(z_1\) and \(z_2\) and hence we terminate the calculation here.

Appendix C: Analytical Solution

Here, we provide the solutions for \(c_0^i\), \(c_1^i\), \(c_2^i\), \(c_3^{i}\,\bar{w}_0^i\) and \(\bar{w}_1^i\)

$$\begin{aligned} c_0^L&=c_0^S=c_0^R=\phi , \end{aligned}$$
(90)
$$\begin{aligned} c_1^L&=\frac{\bar{\hbox {Pe}}}{\kappa }\left( -\bar{F}^L_0\frac{z^2}{2}+\frac{k_1}{\bar{\hbox {Pe}}}z\right) , \end{aligned}$$
(91)
$$\begin{aligned} c_1^S&=\frac{\bar{\hbox {Pe}}}{\kappa }\left( -\bar{F}^S_0\frac{z^2}{2}+k_2z+k_3\right) ,\end{aligned}$$
(92)
$$\begin{aligned} c_1^R&=\frac{\bar{\hbox {Pe}}}{\kappa }\left( -\bar{F}^R_0\frac{z^2}{2}+(\bar{F}^R_0-\bar{f})z+k_4\right) , \end{aligned}$$
(93)
$$\begin{aligned} c_2^L&=\frac{\bar{\hbox {Pe}}}{\kappa }\left( \frac{k_5}{\bar{\hbox {Pe}}}z+\frac{\bar{H}\phi k_1}{\kappa ^{\frac{1}{2}}}\right) -\bar{H}\left( \frac{\bar{\hbox {Pe}}}{\kappa }\right) ^3\left( \frac{\bar{F}^{L\,2}_0z^4}{8}-\frac{\bar{F}^L_0k_1z^3}{2\bar{\hbox {Pe}}}+\frac{k_1^2z^2}{2\bar{\hbox {Pe}}^2}\right) \nonumber \\&\quad -\,\bar{\eta }^L\left( \frac{\bar{\hbox {Pe}}}{\kappa }\right) ^2\left( -\frac{\bar{F}^{L}_0z^4}{24}+\frac{k_1z^3}{\bar{\hbox {Pe}}6}\right) -\frac{k_1\bar{H}\bar{\hbox {Pe}}\phi }{\kappa ^{\frac{3}{2}}}\hbox {e}^{-\left( \frac{\kappa }{\epsilon }\right) ^{\frac{1}{2}}z},\end{aligned}$$
(94)
$$\begin{aligned} c_2^S&=\frac{\bar{\hbox {Pe}}}{\kappa }\left( k_6z+k_7\right) -\bar{\eta }^S\left( \frac{\bar{\hbox {Pe}}}{\kappa }\right) ^2\left( -\frac{\bar{F}^{S}_0z^4}{24}+\frac{k_2z^3}{6}+\frac{k_3z^2}{2}\right) \nonumber \\&\quad -\,\bar{H}\left( \frac{\bar{\hbox {Pe}}}{\kappa }\right) ^3\left( \frac{\bar{F}^{S\,2}_0z^4}{8}-\frac{\bar{F}^S_0k_2z^3}{2}+\frac{\left( k_2^2-\bar{F}^S_0k_3\right) z^2}{2}+k_2k_3z\right) ,\end{aligned}$$
(95)
$$\begin{aligned} c_2^R&=-\bar{H}\left( \frac{\bar{\hbox {Pe}}}{\kappa }\right) ^3\Bigg (\frac{\bar{F}^{R\,2}_0z^4}{8}-\frac{\left( \bar{F}^R_0-\bar{f}\right) \bar{F}^R_0z^3}{2} \nonumber \\&\quad +\,\frac{\left( \left( \bar{F}^R_0-\bar{f}\right) ^2-\bar{F}^R_0k_4\right) z^2}{2}+k_4\left( \bar{F}^R_0-\bar{f}\right) z\Bigg ) \nonumber \\&\quad -\,\bar{\eta }^R\left( \frac{\bar{\hbox {Pe}}}{\kappa }\right) ^2\left( -\frac{\bar{F}^{R}_0z^4}{24}+\frac{\left( \bar{F}^R_0-\bar{f}\right) z^3}{6}+\frac{k_4z^2}{2}-\left( \frac{\bar{F}^R_0}{3}-\frac{\bar{f}}{2}+k_4\right) z\right) \nonumber \\&\quad +\,k_8-\frac{\bar{H}\bar{\hbox {Pe}}^2\phi \bar{f}}{\kappa ^{\frac{3}{2}}}\hbox {e}^{-\left( \frac{\kappa }{\epsilon }\right) ^{\frac{1}{2}}\left( 1-z\right) }, \end{aligned}$$
(96)

The exponential terms of \(c_3\) are

$$\begin{aligned} c_3^{L,\mathrm{exp}}&=-\frac{k_5\bar{H}\bar{\hbox {Pe}}\phi }{\kappa ^{\frac{3}{2}}}\hbox {e}^{-(\frac{\kappa }{\epsilon })^{\frac{1}{2}} z}-\frac{A_5\bar{\hbox {Pe}}\phi }{\kappa ^{\frac{1}{2}}} \hbox {e}^{-\left( \frac{\kappa }{\epsilon }\right) ^{\frac{1}{2}} (z_1-z)},\end{aligned}$$
(97)
$$\begin{aligned} c_3^{S,\mathrm{exp}}&=\frac{A_6\bar{\hbox {Pe}}\phi }{\kappa ^{\frac{1}{2}}}\hbox {e}^{-(\frac{\kappa }{\epsilon })^{\frac{1}{2}} (z-z_1)}-\frac{A_7\bar{\hbox {Pe}}\phi }{\kappa ^{\frac{1}{2}}} \hbox {e}^{-\left( \frac{\kappa }{\epsilon }\right) ^{\frac{1}{2}} (z_2-z)},\end{aligned}$$
(98)
$$\begin{aligned} c_3^{R,\mathrm{exp}}&=\frac{\bar{\hbox {Pe}}^3\bar{f}\bar{H}\left( \frac{\bar{F}^R_0}{2}-\bar{f}+k_4\right) }{\kappa ^{\frac{7}{2}}}\left( -1+\frac{\bar{H}\bar{\hbox {Pe}}}{2}(1-z)\phi \left( \frac{\kappa }{\epsilon }\right) ^{\frac{1}{2}}\right) \hbox {e}^{-\left( \frac{\kappa }{\epsilon }\right) ^{\frac{1}{2}} (1-z)} \nonumber \\&\quad +\frac{A_8\bar{\hbox {Pe}}\phi }{\kappa ^{\frac{1}{2}}} \hbox {e}^{-\left( \frac{\kappa }{\epsilon }\right) ^{\frac{1}{2}} (z-z_2)} ,\end{aligned}$$
(99)
$$\begin{aligned} \bar{w}_0^L&=\frac{\bar{H}\bar{\hbox {Pe}}}{\kappa }\left( -\bar{F}^L_0z\right) +\frac{k_1 \bar{H}}{\kappa }\left( 1-\hbox {e}^{-\left( \frac{\kappa }{\epsilon }\right) ^{\frac{1}{2}}z}\right) ,\end{aligned}$$
(100)
$$\begin{aligned} \bar{w}_0^S&=\frac{\bar{H}\bar{\hbox {Pe}}}{\kappa }\left( -\bar{F}^S_0z+k_2\right) ,\end{aligned}$$
(101)
$$\begin{aligned} \bar{w}_0^R&=\frac{\bar{H}\bar{\hbox {Pe}}}{\kappa }\left( -\bar{F}^R_0z+(\bar{F}^R_0-\bar{f})\right) +\frac{\bar{H}\bar{\hbox {Pe}}\bar{f}}{\kappa }\hbox {e}^{-\left( \frac{\kappa }{\epsilon }\right) ^{\frac{1}{2}}(1-z)},\end{aligned}$$
(102)
$$\begin{aligned} \bar{w}_1^L&=\frac{\bar{H}k_5}{\kappa }-\bar{H}^2\left( \frac{\bar{\hbox {Pe}}}{\kappa }\right) ^3\left( \frac{\bar{F}^{L\,2}_0z^3}{2}-\frac{3\bar{F}^L_0k_1z^2}{2\bar{\hbox {Pe}}}+\frac{k_1^2z}{\bar{\hbox {Pe}}^2}\right) \nonumber \\&\quad -\,\bar{\eta }^L\bar{H}\left( \frac{\bar{\hbox {Pe}}}{\kappa }\right) ^2\left( -\frac{\bar{F}^{L}_0z^3}{6}+\frac{k_1z^2}{\bar{\hbox {Pe}}2}\right) -\frac{\bar{H}k_5}{\kappa }\hbox {e}^{-\left( \frac{\kappa }{\epsilon }\right) ^{\frac{1}{2}}z}+A_5\hbox {e}^{-\left( \frac{\kappa }{\epsilon }\right) ^{\frac{1}{2}}\left( z_1-z\right) },\end{aligned}$$
(103)
$$\begin{aligned} \bar{w}_1^S&=\frac{\bar{H}\bar{\hbox {Pe}}}{\kappa }k_6-\bar{H}^2\left( \frac{\bar{\hbox {Pe}}}{\kappa }\right) ^3\left( \frac{\bar{F}^{S\,2}_0z^3}{2}-\frac{3\bar{F}^S_0k_2z^2}{2}+{\left( k_2^2-\bar{F}^S_0k_3\right) z}+k_2k_3\right) \nonumber \\&\quad -\,\bar{\eta }^S\bar{H}\left( \frac{\bar{\hbox {Pe}}}{\kappa }\right) ^2\left( -\frac{\bar{F}^{S}_0z^3}{6}+\frac{k_2z^2}{2}+{k_3z}\right) \nonumber \\&\quad +A_6\hbox {e}^{-\left( \frac{\kappa }{\epsilon }\right) ^{\frac{1}{2}}\left( z-z_1\right) }+A_7\hbox {e}^{-\left( \frac{\kappa }{\epsilon }\right) ^{\frac{1}{2}}\left( z_2-z\right) },\end{aligned}$$
(104)
$$\begin{aligned} \bar{w}_1^R&=-\bar{H}^2\left( \frac{\bar{\hbox {Pe}}}{\kappa }\right) ^3\Bigg (\frac{\bar{F}^{R\,2}_0z^3}{2}-\frac{3\left( \bar{F}^R_0-\bar{f}\right) \bar{F}^R_0z^2}{2} \nonumber \\&\quad +\,\left( \left( \bar{F}^R_0-\bar{f}\right) ^2-\bar{F}^R_0k_4\right) z+k_4\left( \bar{F}^R_0-\bar{f}\right) \Bigg )+A_8\hbox {e}^{-\left( \frac{\kappa }{\epsilon }\right) ^{\frac{1}{2}}\left( z-z_2\right) } \nonumber \\&\quad -\,\bar{\eta }^R\bar{H}\left( \frac{\bar{\hbox {Pe}}}{\kappa }\right) ^2\left( -\frac{\bar{F}^{R}_0z^3}{6}+\frac{\left( \bar{F}^R_0-\bar{f}\right) z^2}{2}+{k_4z}-\left( \frac{\bar{F}^R_0}{3}-\frac{\bar{f}}{2}+k_4\right) \right) \nonumber \\&\quad -\,\bar{H}^2\bar{f}\left( \frac{\bar{\hbox {Pe}}}{\kappa }\right) ^3\left( \frac{\bar{F}^R_0}{2}-\bar{f}+k_4\right) \left( 1+\frac{\left( \frac{\kappa }{\epsilon }\right) ^{\frac{1}{2}}\left( 1-z\right) }{2}\right) \hbox {e}^{-\left( \frac{\kappa }{\epsilon }\right) ^{\frac{1}{2}}\left( 1-z\right) }, \end{aligned}$$
(105)

The constants \(k_1\) to \(k_4\) and \(A_1\) to \(A_4\) are given in Eq. (85) to Eq. (89), and \(k_5\), \(k_6\), \(k_7\), \(k_8\), \(A_5\), \(A_6\), \(A_7\), \(A_8\) are given by

$$\begin{aligned} A_5&=\frac{\bar{H}\bar{\hbox {Pe}}}{2\kappa ^{\frac{3}{2}}}\left( \bar{F}^L_0-\bar{F}^S_0\right) ,\qquad A_6=A_5,\end{aligned}$$
(106)
$$\begin{aligned} A_7&=\frac{\bar{H}\bar{\hbox {Pe}}}{2\kappa ^{\frac{3}{2}}}\left( \bar{F}^S_0-\bar{F}^R_0\right) ,\qquad A_7=A_8,\end{aligned}$$
(107)
$$\begin{aligned} k_5&=\frac{\bar{\eta }^L\bar{\hbox {Pe}}^2z_1^2}{2\kappa }\left( z_1\left( \frac{2}{3}\bar{F}^L_0-\bar{F}^S_0\right) +z_2\left( \bar{F}^S_0-\bar{F}^R_0\right) +\bar{F}^R_0-\bar{f}\right) \nonumber \\&\quad +\,\frac{(z_1-z_2)\bar{\eta }^S\bar{\hbox {Pe}}^2}{2\kappa }\Big (-z_1^2\bar{F}^L_0+\frac{2}{3}\bar{F}^S_0(z_1-z_2)(2z_1+z_2) \nonumber \\&\quad +\,\bar{F}^R_0(z_1+z_2)(z_2-1)+\bar{f}(z_1+z_2)\Big ) \nonumber \\&\quad +\,\frac{\bar{\eta }^R\bar{\hbox {Pe}}^2(z_2-1)}{2\kappa }\Big (-z_1^2\bar{F}^L_0+\bar{F}^S_0(z_1+z_2)(z_1-z_2) \nonumber \\&\quad +\,\frac{2}{3}\bar{F}^R_0(2z_2+1)(z_2-1)+\bar{f}(z_2+1)\Big ),\end{aligned}$$
(108)
$$\begin{aligned} k_6&=\frac{\bar{\eta }^S\bar{\hbox {Pe}}z_2}{2\kappa }\left( z_1^2\bar{F}^L_0-\frac{1}{3}\bar{F}^S_0(3z_1^2-2z_2^2)-\bar{F}^R_0z_2(z_2-1)-z_2\bar{f}\right) \nonumber \\&\quad +\,\frac{\bar{\eta }^R\bar{\hbox {Pe}}(z_2-1)}{2\kappa }\Big (-z_1^2\bar{F}^L_0+\bar{F}^S_0(z_1+z_2)(z_1-z_2) \nonumber \\&\quad +\,\frac{2}{3}\bar{F}^R_0(2z_2+1)(z_2-1)+\bar{f}(z_2+1)\Big ),\end{aligned}$$
(109)
$$\begin{aligned} k_7&=-\frac{1}{8\kappa ^2}\bar{\hbox {Pe}}^2\bar{H}z_1^4(\bar{F}^L_0-\bar{F}^S_0)^2 \nonumber \\&\quad +\,\frac{\bar{H}\bar{\hbox {Pe}}\phi }{\kappa ^{\frac{1}{2}}}\left( z_1(\bar{F}^L_0-\bar{F}^S_0)+z_2(\bar{F}^S_0-\bar{F}^R_0)+\bar{F}^R_0-\bar{f}\right) \nonumber \\&\quad +\,\frac{\bar{\eta }^L\bar{\hbox {Pe}}z_1^3}{24\kappa }\left( z_1(5\bar{F}^L_0-8\bar{F}^S_0)+8z_2(\bar{F}^S_0-\bar{F}^R_0)+8\bar{F}^R_0-8\bar{f}\right) \nonumber \\&\quad -\,\frac{\bar{\eta }^S\bar{\hbox {Pe}}z_1^3}{24\kappa }\left( z_1(6\bar{F}^L_0-9\bar{F}^S_0)+8z_2(\bar{F}^S_0-\bar{F}^R_0)+8\bar{F}^R_0-8\bar{f}\right) , \end{aligned}$$
(110)
$$\begin{aligned} k_8&=-\frac{\bar{\hbox {Pe}}^3\bar{H}}{8\kappa ^3}\left( z_1^2(\bar{F}^L_0-\bar{F}^S_0)+z_2^2(\bar{F}^S_0-\bar{F}^R_0)\right) ^2 \nonumber \\&\quad +\,\frac{\bar{H}\bar{\hbox {Pe}}^2\phi }{\kappa ^{\frac{3}{2}}}\left( z_1(\bar{F}^L_0-\bar{F}^S_0)+z_2(\bar{F}^S_0-\bar{F}^R_0)+\bar{F}^R_0-\bar{f}\right) \nonumber \\&\quad -\,\frac{\bar{\eta }^R\bar{\hbox {Pe}}^2z_2^2}{24\kappa ^2}\left( 6z_1^2(\bar{F}^L_0-\bar{F}^S_0)+z_2^2(6\bar{F}^S_0-9\bar{F}^R_0)+8z_2(\bar{F}^R_0-\bar{f})\right) \nonumber \\&\quad +\,\frac{\bar{\eta }^L\bar{\hbox {Pe}}^2z_1^3}{24\kappa ^2}\left( z_1(5\bar{F}^L_0-8\bar{F}^S_0)+8z_2(\bar{F}^S_0-\bar{F}^R_0)+8\bar{F}^R_0-8\bar{f}\right) \nonumber \\&\quad +\,\frac{\bar{\eta }^S\bar{\hbox {Pe}}^2(z_1-z_2)}{24\kappa ^2}\Big (\bar{F}^S_0(9z_1^2+10z_1z_2+5z_2^2)(z_1-z_2) \nonumber \\&\quad -\,6z_1^2\bar{F}^L_0(z_1+z_2) \nonumber \\&\quad +\,8\bar{F}^R_0(z_2-1)(z_1^2+z_1z_2+z_2^2)+8\bar{f}(z_1^2+z_1z_2+z_2^2)\Big ), \end{aligned}$$
(111)

where \(\bar{F}^L_0=\bar{\eta }^Lc^L_0+\bar{\sigma }^L,\qquad \bar{F}^S_0=\bar{\eta }^Sc^S_0+\bar{\sigma }^S,\qquad \bar{F}^R_0=\bar{\eta }^Rc^R_0+\bar{\sigma }^R\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Payvandi, S., Daly, K.R., Zygalakis, K.C. et al. Mathematical Modelling of the Phloem: The Importance of Diffusion on Sugar Transport at Osmotic Equilibrium. Bull Math Biol 76, 2834–2865 (2014). https://doi.org/10.1007/s11538-014-0035-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-014-0035-7

Keywords

Navigation