Skip to main content

Advertisement

Log in

Reconstructing a Phylogenetic Level-1 Network from Quartets

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We describe a method that will reconstruct an unrooted binary phylogenetic level-1 network on \(n\) taxa from the set of all quartets containing a certain fixed taxon, in \(O(n^3)\) time. We also present a more general method which can handle more diverse quartet data, but which takes \(O(n^6)\) time. Both methods proceed by solving a certain system of linear equations over the two-element field \(\mathrm{GF}(2)\). For a general dense quartet set, i.e. a set containing at least one quartet on every four taxa, our \(O(n^6)\) algorithm constructs a phylogenetic level-1 network consistent with the quartet set if such a network exists and returns an \(O(n^2)\)-sized certificate of inconsistency otherwise. This answers a question raised by Gambette, Berry and Paul regarding the complexity of reconstructing a level-1 network from a dense quartet set, and more particularly regarding the complexity of constructing a cyclic ordering of taxa consistent with a dense quartet set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Artin M (1991) Algebra. Prentice Hall Inc, Englewood Cliffs ISBN 0-13-004763-5

    Google Scholar 

  • Bandelt H-J, Dress A (1986) Reconstructing the shape of a tree from observed dissimilarity data. Adv Appl Math 7(3):309–343 ISSN 0196-8858

    Article  MathSciNet  MATH  Google Scholar 

  • Bandelt H-J, Dress A (1993) A relational approach to split decomposition. In: Studies in classification, data analysis and knowledge organization, pp 123–131

  • Bard GV (2009) Algebraic cryptanalysis. Springer, Dordrecht

    Book  MATH  Google Scholar 

  • Berry V, Gascuel O (2000) Inferring evolutionary trees with strong combinatorial evidence. Theor Comput Sci 240(2):271–298 ISSN 0304-3975. Computing and combinatorics (Shanghai, 1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Coppersmith D (1994) Solving homogeneous linear equations over GF(2) via block Wiedemann algorithm. Math Comput 62(205):333–350 ISSN 0025-5718

    MathSciNet  MATH  Google Scholar 

  • Erdös PL, Steel MA, Székely LA, Warnow TJ (1999) A few logs suffice to build (almost) all trees. I. Random Struct Algorithms 14(2):153–184 ISSN 1042-9832

    Article  MATH  Google Scholar 

  • Gambette P, Berry V, Paul C (2012) Quartets and unrooted phylogenetic networks. JBCB 10(4):1250004.1–1250004.23.doi:10.1142/S0219720012500047

  • Grünewald S, Huber KT, Wu Q (2008) Two novel closure rules for constructing phylogenetic super-networks. Bull Math Biol 70(7):1906–1924

    Article  MathSciNet  MATH  Google Scholar 

  • Grünewald S, Moulton V, Spillner A (2009) Consistency of the QNet algorithm for generating planar split networks from weighted quartets. Discrete Appl Math 157(10):2325–2334 ISSN 0166-218X

    Article  MathSciNet  MATH  Google Scholar 

  • Heyting A (1980) Axiomatic projective geometry. Bibliotheca Mathematica [Mathematics Library], 2nd edn. V. Wolters-Noordhoff Scientific Publications Ltd., Groningen ISBN 0-444-85431-2

    Google Scholar 

  • Huntington EV (1924) A new set of postulates for betweenness, with proof of complete independence. Trans Am Math Soc 26(2):257–282 ISSN 0002-9947

    Article  MathSciNet  MATH  Google Scholar 

  • Huson DH, Rupp R, Scornavacca C (2010) Phylogenetic networks: concepts, algorithms and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Jansson J, Sung W-K (2006) Inferring a level-1 phylogenetic network from a dense set of rooted triplets. Theor Comput Sci 363(1):60–68 ISSN 0304-3975

    Article  MathSciNet  MATH  Google Scholar 

  • Jansson J, Nguyen NB, Sung W-K (2006) Algorithms for combining rooted triplets into a galled phylogenetic network. SIAM J Comput 35(5):1098–1121 ISSN 0097-5397

    Article  MathSciNet  MATH  Google Scholar 

  • Semple C, Steel M (2003) Phylogenetics, volume 24 of Oxford lecture series in mathematics and its applications. Oxford University Press, Oxford ISBN 0-19-850942-1

    Google Scholar 

  • Semple C, Steel M (2004) Cyclic permutations and evolutionary trees. Adv Appl Math 32(4):669–680 ISSN 0196-8858

    Article  MathSciNet  MATH  Google Scholar 

  • Sonke W (2013) Fylogenetica. 2013a. url:http://filedir.com/company/willem-sonke/

  • Sonke W (2013) Reconstructing a level-1-network from quartets. 2013b. url:http://alexandria.tue.nl/extra1/afstversl/wsk-i/sonke2013.pdf

  • Steel M (1992) The complexity of reconstructing trees from qualitative characters and subtrees. J Classif 9(1):91–116 ISSN 0176-4268

    Article  MathSciNet  MATH  Google Scholar 

  • Stein W et al. (2014) Sage Mathematics Software, (Version 6.2). The Sage Development Team, 2014. url:http://www.sagemath.org

  • To T-H, Habib M (2009) Level-k phylogenetic networks are constructable from a dense triplet set in polynomial time. In Proceedings of the 20th annual symposium on combinatorial pattern matching, CPM ’09. Berlin, Heidelberg, 2009. Springer, pp 275–288. ISBN 978-3-642-02440-5

  • Van Iersel L, Kelk S (2011) Constructing the simplest possible phylogenetic network from triplets. Algorithmica 60(2):207–235 ISSN 0178-4617

  • Van Iersel L, Keijsper J, Kelk S, Stougie L, Hagen F, Boekhout T (2009) Constructing level-2 phylogenetic networks from triplets. IEE/ACM Trans Comp Biol Bioinform 6(4):667–681

  • Wiedemann DH (1986) Solving sparse linear equations over finite fields. IEEE Trans Inform Theory 32(1):54–62 ISSN 0018-9448

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Steven Kelk for initiating this research by showing us the question of Gambette et al. (2012).We also thank two anonymous referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. M. Keijsper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keijsper, J.C.M., Pendavingh, R.A. Reconstructing a Phylogenetic Level-1 Network from Quartets. Bull Math Biol 76, 2517–2541 (2014). https://doi.org/10.1007/s11538-014-0022-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-014-0022-z

Keywords

Navigation