Skip to main content
Log in

Stochastic Reaction–Diffusion Processes with Embedded Lower-Dimensional Structures

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Small copy numbers of many molecular species in biological cells require stochastic models of the chemical reactions between the molecules and their motion. Important reactions often take place on one-dimensional structures embedded in three dimensions with molecules migrating between the dimensions. Examples of polymer structures in cells are DNA, microtubules, and actin filaments. An algorithm for simulation of such systems is developed at a mesoscopic level of approximation. An arbitrarily shaped polymer is coupled to a background Cartesian mesh in three dimensions. The realization of the system is made with a stochastic simulation algorithm in the spirit of Gillespie. The method is applied to model problems for verification and two more detailed models of transcription factor interaction with the DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Agbanusi, I. C., & Isaacson, S. A. (2013). A comparison of bimolecular reaction models for stochastic reaction diffusion systems. Bull. Math. Biol. (to appear).

  • Andrews, S. S., Addy, N. J., Brent, R., & Arkin, A. P. (2010). Detailed simulations of cell biology with Smoldyn 2.1. PLoS Comput. Biol., 6(3), e1000705.

    Article  Google Scholar 

  • Arfken, G. (1970). Mathematical methods for physicists (2nd ed.). Orlando: Academic Press.

    MATH  Google Scholar 

  • Atzberger, P. J., Kramer, P. R., & Peskin, C. S. (2007). A stochastic immersed boundary method for fluid-structure dynamics at microscopic length scales. J. Comput. Phys., 224, 1255–1292.

    Article  MathSciNet  MATH  Google Scholar 

  • Berg, O. G., & Ehrenberg, M. (1982). Association kinetics with coupled three- and one-dimensional diffusion: chain-length dependence of the association rate to specific DNA sites. Biophys. Chem., 15, 41–51.

    Article  Google Scholar 

  • Berg, O. G., Winter, R. B., & von Hippel, P. H. (1981). Diffusion-driven mechanisms of protein translocation on nucleic acids, 1: models and theory. Biochemistry, 20, 6929–6948.

    Article  Google Scholar 

  • Blainey, P. C., Luo, G., Kou, S. C., Mangel, W. F., Verdine, G. L., Bagchi, B., & Xie, X. S. (2009). Nonspecifically bound proteins spin while diffusing along DNA. Nat. Struct. Mol. Biol., 16, 1224–1229.

    Article  Google Scholar 

  • Cao, Y., Gillespie, D. T., & Petzold, L. R. (2005). The slow-scale stochastic simulation algorithm. J. Chem. Phys., 122, 014116.

    Article  Google Scholar 

  • Cao, Y., Gillespie, D. T., & Petzold, L. R. (2006). Efficient step size selection for the tau-leaping simulation method. J. Chem. Phys., 124, 044109.

    Article  Google Scholar 

  • Collins, F. C., & Kimball, G. E. (1949). Diffusion-controlled reaction rates. J. Colloid Sci., 4, 425–437.

    Article  Google Scholar 

  • Doi, M. (1976). Stochastic theory of diffusion-controlled reaction. J. Phys. A, Math. Gen., 9(9), 1479–1495.

    Article  Google Scholar 

  • Donev, A., Bulatov, V. V., Oppelstrup, T., Gilmer, G. H., Sadigh, B., & Kalos, M. H. (2010). A first-passage kinetic Monte Carlo algorithm for complex diffusion–reaction systems. J. Comput. Phys., 229, 3214–3236.

    Article  MathSciNet  MATH  Google Scholar 

  • Drawert, B., Lawson, M. J., Petzold, L., & Khammash, M. (2010). The diffusive finite state projection algorithm for efficient simulation of the stochastic reaction–diffusion master equation. J. Chem. Phys., 132(7), 074101.

    Article  Google Scholar 

  • Drawert, B., Engblom, S., & Hellander, A. (2012). URDME: a modular framework for stochastic simulation of reaction-transport processes in complex geometries. BMC Syst. Biol., 6, 76.

    Article  Google Scholar 

  • Elf, J., & Ehrenberg, M. (2004). Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases. Syst. Biol., 1, 230–236.

    Article  Google Scholar 

  • Elf, J., Dončić, A., & Ehrenberg, M. (2003). Mesoscopic reaction–diffusion in intracellular signaling. In S. M. Bezrukov, H. Frauenfelder, & F. Moss (Eds.), Proc. SPIE: Vol. 5110. Fluctuations and noise in biological, biophysical, and biomedical systems (pp. 114–124).

    Chapter  Google Scholar 

  • Elf, J., Li, G.-W., & Xie, X. S. (2007). Probing transcription factor dynamics at the single-molecule level in a living cell. Science, 316(5828), 1191–1194.

    Article  Google Scholar 

  • Elowitz, M. B., Levine, A. J., Siggia, E. D., & Swain, P. S. (2002). Stochastic gene expression in a single cell. Science, 297(5584), 1183–1186.

    Article  Google Scholar 

  • Engblom, S., Ferm, L., Hellander, A., & Lötstedt, P. (2009). Simulation of stochastic reaction–diffusion processes on unstructured meshes. SIAM J. Sci. Comput., 31, 1774–1797.

    Article  MathSciNet  MATH  Google Scholar 

  • Erban, R., & Chapman, S. J. (2007). Reactive boundary conditions for stochastic simulations of reaction–diffusion processes. Phys. Biol., 4, 16–28.

    Article  Google Scholar 

  • Erban, R., & Chapman, J. (2009). Stochastic modelling of reaction–diffusion processes: algorithms for bimolecular reactions. Phys. Biol., 6, 046001.

    Article  Google Scholar 

  • Fange, D., Berg, O. G., Sjöberg, P., & Elf, J. (2010). Stochastic reaction–diffusion kinetics in the microscopic limit. Proc. Natl. Acad. Sci. USA, 107(46), 19820–19825.

    Article  MATH  Google Scholar 

  • Flegg, M. B., Chapman, S. J., & Erban, R. (2012). The two-regime method for optimizing stochastic reaction–diffusion simulations. J. R. Soc. Interface, 9, 859–868.

    Article  Google Scholar 

  • Gibson, M. A., & Bruck, J. (2000). Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem., 104(9), 1876–1889.

    Article  Google Scholar 

  • Gillespie, D. T. (1976). A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys., 22(4), 403–434.

    Article  MathSciNet  Google Scholar 

  • Halford, S. E. (2009). An end to 40 years of mistakes in DNA-protein association kinetics? Biochem. Soc. Trans., 37, 343–348.

    Article  Google Scholar 

  • Hammar, P., Leroy, P., Mahmutovic, A., Marklund, E. G., Berg, O. G., & Elf, J. (2012). The lac repressor displays facilitated diffusion in living cells. Science, 336, 1595–1598.

    Article  Google Scholar 

  • Hattne, J., Fange, D., & Elf, J. (2005). Stochastic reaction–diffusion simulation with MesoRD. Bioinformatics, 21, 2923–2924.

    Article  Google Scholar 

  • Hellander, S. (2013). Single molecule simulations in complex geometries with embedded dynamic one-dimensional structures. J. Chem. Phys., 139, 014103.

    Article  Google Scholar 

  • Hellander, S., & Lötstedt, P. (2011). Flexible single molecule simulation of reaction–diffusion processes. J. Comput. Phys., 230, 3948–3965.

    Article  MathSciNet  MATH  Google Scholar 

  • Hellander, A., Hellander, S., & Lötstedt, P. (2012a). Coupled mesoscopic and microscopic simulation of stochastic reaction–diffusion processes in mixed dimensions. Multiscale Model. Simul., 10(2), 585–611.

    Article  MathSciNet  MATH  Google Scholar 

  • Hellander, S., Hellander, A., & Petzold, L. (2012b). Reaction–diffusion master equation in the microscopic limit. Phys. Rev. E, 85, 042901.

    Article  Google Scholar 

  • Hepburn, I., Chen, W., Wils, S., & Schutter, E. D. (2012). STEPS: efficient simulation of stochastic reaction–diffusion models in realistic morphologies. BMC Syst. Biol., 6, 36.

    Article  Google Scholar 

  • Howard, J. (1996). The movement of kinesin along microtubules. Annu. Rev. Physiol., 58, 703–729.

    Article  Google Scholar 

  • Isaacson, S. A. (2009). The reaction–diffusion master equation as an asymptotic approximation of diffusion to a small target. SIAM J. Appl. Math., 70, 77–111.

    Article  MathSciNet  MATH  Google Scholar 

  • Isaacson, S. A., & Peskin, C. S. (2006). Incorporating diffusion in complex geometries into stochastic chemical kinetics simulations. SIAM J. Sci. Comput., 28(1), 47–74.

    Article  MathSciNet  MATH  Google Scholar 

  • Kerr, R. A., Bartol, T. M., Kaminsky, B., Dittrich, M., Chang, J.-C. J., Baden, S. B., Sejnowski, T. J., & Stiles, J. R. (2008). Fast Monte Carlo simulation methods for biological reaction–diffusion systems in solution and on surfaces. SIAM J. Sci. Comput., 30(6), 3126–3149.

    Article  MathSciNet  MATH  Google Scholar 

  • Kholodenko, B. N. (2002). MAP kinase cascade signaling and endocytic trafficking: a marriage of convenience? Trends Cell Biol., 12(4), 173–177.

    Article  MathSciNet  Google Scholar 

  • Kim, H., & Shin, K. J. (2000). On the diffusion-influenced reversible trapping problem in one dimension. J. Chem. Phys., 112(19), 8312–8317.

    Article  Google Scholar 

  • Klann, M., Ganuly, A., & Koeppl, H. (2012). Hybrid spatial Gillespie and particle tracking simulation. Bioinformatics, 28, i549–i555.

    Article  Google Scholar 

  • Li, G.-W., Berg, O. G., & Elf, J. (2009). Effects of macromolecular crowding and DNA looping on gene regulation kinetics. Nat. Phys., 5, 294–297.

    Article  Google Scholar 

  • Mallik, R., & Gross, S. P. (2004). Molecular motors: strategies to get along. Curr. Biol., 14, 971–982.

    Article  Google Scholar 

  • Marquez-Lago, T. T., & Burrage, K. (2007). Binomial tau-leap spatial stochastic simulation algorithm for applications in chemical kinetics. J. Chem. Phys., 127, 104101.

    Article  Google Scholar 

  • Mauro, A. J., Sigurdsson, J. K., Shrake, J., Atzberger, P. J., & Isaacson, S. A. (2013). A first-passage kinetic Monte Carlo method for reaction–drift–diffusion processes (Technical report). arXiv:1302.0793.

  • Metzler, R. (2001). The future is noisy: the role of spatial fluctuations in genetic switching. Phys. Rev. Lett., 87, 068103.

    Article  Google Scholar 

  • Montroll, E. W. (1969). Random walks on lattices, III: calculation of first-passage times with application to exciton trapping on photosynthetic units. J. Math. Phys., 10(4), 753–765.

    Article  Google Scholar 

  • Montroll, E. W., & Weiss, G. H. (1965). Random walks on lattices II. J. Math. Phys., 6(2), 167–181.

    Article  MathSciNet  Google Scholar 

  • Munsky, B., Neuert, G., & van Oudenaarden, A. (2012). Using gene expression noise to understand gene regulation. Science, 336(6078), 183–187.

    Article  MathSciNet  Google Scholar 

  • Raj, A., & van Oudenaarden, A. (2008). Nature, nurture, or chance: stochastic gene expression and its consequences. Cell, 135(2), 216–226.

    Article  Google Scholar 

  • Slepoy, A., Thompson, A. P., & Plimpton, S. J. (2008). A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks. J. Chem. Phys., 128, 205101.

    Article  Google Scholar 

  • Smoluchowski, M. v. (1917). Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Z. Phys. Chem., 92, 129–168.

    Google Scholar 

  • Swain, P. S. (2004). Efficient attenuation of stochasticity in gene expression through post-transcriptional control. J. Mol. Biol., 344(4), 965–976.

    Article  MathSciNet  Google Scholar 

  • Takahashi, K., Tănase-Nicola, S., & ten Wolde, P. R. (2010). Spatio-temporal correlations can drastically change the response of a MAPK pathway. Proc. Natl. Acad. Sci. USA, 107(6), 2473–2478.

    Article  Google Scholar 

  • Vale, R. D. (2003). The molecular motor toolbox for intracellular transport. Cell, 112, 467–480.

    Article  Google Scholar 

  • van Zon, J. S., & ten Wolde, P. R. (2005). Green’s-function reaction dynamics: a particle-based approach for simulating biochemical networks in time and space. J. Chem. Phys., 123, 234910.

    Article  Google Scholar 

  • von Hippel, H. P. H., & Berg, O. G. (1989). Facilitated target location in biological systems. J. Biol. Chem., 264, 675–678.

    Google Scholar 

  • Watson, J. D., & Crick, F. H. C. (1953). Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature, 171(4356), 737–738.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Swedish Research Council (SH, SW), the European Research Council (JE), and the NIH grant for StochSS with number 1R01EB014877-01 (SH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Lötstedt.

Appendix

Appendix

Table 7 Biochemical parameters in Sect. 4
Table 8 Discretization parameters in Sect. 4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Elf, J., Hellander, S. et al. Stochastic Reaction–Diffusion Processes with Embedded Lower-Dimensional Structures. Bull Math Biol 76, 819–853 (2014). https://doi.org/10.1007/s11538-013-9910-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9910-x

Keywords

Navigation