Skip to main content

Abstract

The most commonly employed spatial stochastic simulation methods for biochemical systems in molecular systems biology are reviewed from a multiscale perspective. Three levels of approximation are distinguished: macroscopic, mesoscopic, and microscopic levels. The relation between the levels of approximation is discussed for both reactions between molecules and transport of the molecules through a solvent. Computational methods are described for each level separately and for hybrid methods involving two levels. Free software implementing these methods in space and time is surveyed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I.C. Agbanusi, S.A. Isaacson, A comparison of bimolecular reaction models for stochastic reaction diffusion systems. Bull. Math. Biol. 76, 922–946 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. D.F. Anderson, D.J. Higham, Multilevel Monte Carlo for continuous Markov chains, with applications in biochemical kinetics. Multiscale Model. Simul. 10, 146–179 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. D.F. Anderson, G. Craciun, T.G. Kurtz, Product-form stationary distributions for deficiency zero chemical reaction networks. Bull. Math. Biol. 72, 1947–1970 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. S.S. Andrews, D. Bray, Stochastic simulation of chemical reactions with spatial resolution and single molecule detail. Phys. Biol. 1, 137–151 (2004)

    Article  Google Scholar 

  5. S.S. Andrews, N.J. Addy, R. Brent, A.P. Arkin, Detailed simulations of cell biology with Smoldyn 2.1. PLoS Comput. Biol. 6(3), e1000705 (2010)

    Google Scholar 

  6. G. Arampatzis, M. Katsoulakis, P. Plecháč, Parallelization, processor communication and error analysis in lattice kinetic Monte Carlo. SIAM J. Numer. Anal. 52(3), 1156–1182 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. K. Ball, T.G. Kurtz, L. Popovic, G. Rempala, Asymptotic analysis of multiscale approximations to reaction networks. Ann. Appl. Probab. 16, 1925–1961 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Barkai, Y. Garini, R. Metzler, Strange kinetics of single molecules in living cells. Phys. Today 65(8), 29–35 (2012)

    Article  Google Scholar 

  9. P. Bauer, J. Lindén, S. Engblom, B. Jonsson, Efficient inter-process synchronization for parallel discrete event simulation on multicores, in Proceedings of the 3rd ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, SIGSIM PADS ’15, pp. 183–194 (2015)

    Google Scholar 

  10. B. Bayati, P. Chatelin, P. Koumoutsakos, Adaptive mesh refinement for stochastic reaction-diffusion processes. J. Comput. Phys. 230, 13–26 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. U.S. Bhalla, Signaling in small subcellular volumes. I. Stochastic and diffusion effects on individual pathways. Biophys. J. 87, 733–744 (2004)

    Google Scholar 

  12. E. Blanc, S. Engblom, A. Hellander, P. Lötstedt, Mesoscopic modeling of reaction-diffusion kinetics in the subdiffusive regime. Multiscale Model. Simul. 14, 668–707 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Brandts, S. Korotov, M. Křížek, J. Šolc, On nonobtuse simplicial partitions. SIAM Rev. 51(2), 317–335 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Burrage, J. Hancock, A. Leier, D.V. Nicolau Jr., Modelling and simulation techniques for membrane biology. Brief. Bioinform. 8(4), 234–244 (2007)

    Article  Google Scholar 

  15. Y. Cao, D.T. Gillespie, L.R. Petzold, The slow-scale stochastic simulation algorithm. J. Chem. Phys. 122, 014116 (2005)

    Article  Google Scholar 

  16. Y. Cao, D. Gillespie, L. Petzold, Efficient step size selection for the tau-leaping simulation method. J. Chem. Phys. 124, 044109 (2006)

    Article  Google Scholar 

  17. A. Chevallier, S. Engblom, Pathwise error bounds in multiscale variable splitting methods for spatial stochastic kinetics. Technical Report arXiv:1607.00805, Uppsala University, Uppsala (2016)

    Google Scholar 

  18. A. Crudu, A. Debussche, O. Radulescu, Hybrid stochastic simplifications for multiscale gene networks. BMC Syst. Biol. 3, 89 (2009)

    Article  Google Scholar 

  19. B.J. Daigle, M.K. Roh, L.R. Petzold, J. Niemi, Accelerated maximum likelihood parameter estimation for stochastic biochemical systems. BMC Bioinf. 13(1), 1–18 (2012)

    Article  Google Scholar 

  20. M.H.A. Davies, Piecewise-deterministic Markov processes: a general class of non-diffusion stochastic models. J. R. Stat. Soc., Ser. B 46, 358–388 (1984)

    Google Scholar 

  21. P. Deuflhard, W. Huisinga, T. Jahnke, M. Wulkow, Adaptive discrete Galerkin methods applied to the chemical master equation. SIAM J. Sci. Comput. 30(6), 2990–3011 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Dobrzyński, J.V. Rodríguez, J.A. Kaandorp, J.G. Blom, Computational methods for diffusion-influenced biochemical reactions. Bioinformatics 23(15), 134–155 (2007)

    Article  Google Scholar 

  23. M. Doi, Stochastic theory of diffusion-controlled reaction. J. Phys. A: Math. Gen. 9(9), 1479–1495 (1976)

    Article  Google Scholar 

  24. A. Donev, V.V. Bulatov, T. Oppelstrup, G.H. Gilmer, B. Sadigh, M.H. Kalos, A First Passage Kinetic Monte Carlo algorithm for complex diffusion–reaction systems. J. Comput. Phys. 229, 3214–3236 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. B. Drawert, M.J. Lawson, L. Petzold, M. Khammash, The diffusive finite state projection algorithm for efficient simulation of the stochastic reaction-diffusion master equation. J. Chem. Phys. 132(7), 074101 (2010)

    Google Scholar 

  26. B. Drawert, S. Engblom, A. Hellander, URDME: a modular framework for stochastic simulation of reaction-transport processes in complex geometries. BMC Syst. Biol. 6, 76 (2012)

    Article  Google Scholar 

  27. A. Duncan, R. Erban, K. Zygalakis, Hybrid framework for the simulation of stochastic chemical kinetics. J. Comput. Phys. 326, 398–419 (2016)

    Article  MathSciNet  Google Scholar 

  28. W. E, D. Liu, E. Vanden-Eijnden, Nested stochastic simulation algorithm for chemical kinetic systems with disparate rates. J. Comput. Phys. 221, 158–180 (2007)

    Google Scholar 

  29. J. Elf, M. Ehrenberg, Fast evaluation of fluctuations in biochemical networks with the linear noise approximation. Genome Res. 13, 2475–2484 (2003)

    Article  Google Scholar 

  30. J. Elf, M. Ehrenberg, Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases. Syst. Biol. 1, 230–236 (2004)

    Article  Google Scholar 

  31. M.B. Elowitz, A.J. Levine, E.D. Siggia, P.S. Swain, Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002)

    Article  Google Scholar 

  32. Y. Elskens, Microscopic derivation of a Markovian master equation in a deterministic model of chemical reaction. J. Stat. Phys. 37(5–6), 673–695 (1984)

    Article  MathSciNet  Google Scholar 

  33. S. Engblom, Computing the moments of high dimensional solutions of the master equation. Appl. Math. Comput. 180(2), 498–515 (2006)

    MathSciNet  MATH  Google Scholar 

  34. S. Engblom, Numerical Solution Methods in Stochastic Chemical Kinetics. PhD thesis, Uppsala University (2008)

    Google Scholar 

  35. S. Engblom, Spectral approximation of solutions to the chemical master equation. J. Comput. Appl. Math. 229(1), 208–221 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. S. Engblom, Parallel in time simulation of multiscale stochastic chemical kinetics. Multiscale Model. Simul. 8(1), 46–68 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. S. Engblom, Strong convergence for split-step methods in stochastic jump kinetics. SIAM J. Numer. Anal. 53(6), 2655–2676 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. S. Engblom, L. Ferm, A. Hellander, P. Lötstedt, Simulation of stochastic reaction-diffusion processes on unstructured meshes. SIAM J. Sci. Comput. 31, 1774–1797 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. R. Erban, J. Chapman, Stochastic modelling of reaction-diffusion processes: algorithms for bimolecular reactions. Phys. Biol. 6, 046001 (2009)

    Article  Google Scholar 

  40. R. Erban, J. Chapman, P.K. Maini, A practical guide to stochastic simulations of reaction-diffusion processes. Technical report, Mathematical Institute, University of Oxford, Oxford (2007). http://arxiv.org/abs/0704.1908

    Google Scholar 

  41. H. Erten, A. Üngör, Quality triangulations with locally optimal Steiner points. SIAM J. Sci. Comput. 31, 2103–2130 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. D. Fange, J. Elf, Noise-induced min phenotypes in E. coli. PLoS Comput. Biol. 2, 637–648 (2006)

    Google Scholar 

  43. D. Fange, O.G. Berg, P. Sjöberg, J. Elf, Stochastic reaction-diffusion kinetics in the microscopic limit. Proc. Natl. Acad. Sci. U. S. A. 107(46), 19820–19825 (2010)

    Article  MATH  Google Scholar 

  44. M. Feinberg, The existence and uniqueness of steady states for a class of chemical reaction networks. Arch. Ration. Mech. Anal. 132, 311–370 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  45. L. Ferm, P. Lötstedt, A. Hellander, A hierarchy of approximations of the master equation scaled by a size parameter. J. Sci. Comput. 34, 127–151 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. L. Ferm, A. Hellander, P. Lötstedt, An adaptive algorithm for simulation of stochastic reaction-diffusion processes. J. Comput. Phys. 229, 343–360 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. M.B. Flegg, S.J. Chapman, R. Erban, The two-regime method for optimizing stochastic reaction-diffusion simulations. J. R. Soc. Interface 9, 859–868 (2012)

    Article  Google Scholar 

  48. M.B. Flegg, S. Hellander, R. Erban, Convergence of methods for coupling of microscopic and mesoscopic reaction–diffusion simulations. J. Comput. Phys. 289, 1–17 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. B. Franz, M. Flegg, S.J. Chapman, R. Erban, Multiscale reaction-diffusion algorithms: PDE-assisted Brownian dynamics. SIAM J. Appl. Math. 73, 1224–1247 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  50. F. Fröhlich, P. Thomas, A. Kazeroonian, F.J. Thies, R. Grima, J. Hasenauer, Inference for stochastic chemical kinetics using moment equations and systems size expansion. PLoS Comput. Biol. 12, e1005030 (2016)

    Article  Google Scholar 

  51. C. Gadgil, C.-H.- Lee, H.G. Othmer, A stochastic analysis of first-order reaction networks. Bull. Math. Biol. 67, 901–946 (2005)

    Google Scholar 

  52. A. Ganguly, D. Altintan, H. Koeppl, Jump-diffusion approximation of stochastic reaction dynamics: Error bounds and algorithms. Multiscale Model. Simul. 13, 1390–1419 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  53. C.W. Gardiner, Handbook of Stochastic Methods. Springer Series in Synergetics, 3rd edn. (Springer, Berlin 2004)

    Google Scholar 

  54. C.W. Gardiner, K.J. McNeil, D.F. Walls, I.S. Matheson, Correlations in stochastic theories of chemical reactions. J. Stat. Phys. 14(4), 307–331 (1976)

    Article  Google Scholar 

  55. M.A. Gibson, J. Bruck, Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. 104(9), 1876–1889 (2000)

    Article  Google Scholar 

  56. D.T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  57. D.T. Gillespie, A rigorous derivation of the chemical master equation. Physica A 188, 404–425 (1992)

    Article  Google Scholar 

  58. D.T. Gillespie, Markov Processes: An introduction for Physical Scientists (Academic, San Diego, CA, 1992)

    MATH  Google Scholar 

  59. D.T. Gillespie, Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115(4), 1716–1733 (2001)

    Article  Google Scholar 

  60. D.T. Gillespie, A diffusional bimolecular propensity function. J. Chem. Phys. 131(16), 164109 (2009)

    Google Scholar 

  61. D.T. Gillespie, E. Seitaridou, Simple Brownian Diffusion (Oxford University Press, Oxford, 2013)

    MATH  Google Scholar 

  62. D.T. Gillespie, A. Hellander, L.R. Petzold, Perspective: stochastic algorithms for chemical kinetics. J. Chem. Phys. 138, 170901 (2013)

    Article  Google Scholar 

  63. J. Goutsias, G. Jenkinson, Markovian dynamics on complex reaction networks. Phys. Rep. 529, 199–264 (2013)

    Article  MathSciNet  Google Scholar 

  64. R. Grima, A study of the moment-closure approximations for stochastic chemical kinetics. J. Chem. Phys. 136, 154105 (2012)

    Article  Google Scholar 

  65. R. Grima, Linear-noise approximation and the chemical master equation agree up to second-order moments for a class of chemical systems. Phys. Rev. E 92, 042124 (2015)

    Article  MathSciNet  Google Scholar 

  66. P. Hammar, P. Leroy, A. Mahmutovic, E.G. Marklund, O.G. Berg, J. Elf, The lac repressor displays facilitated diffusion in living cells. Science 336, 1595–1598 (2012)

    Article  Google Scholar 

  67. E.L. Haseltine, J.B. Rawlings, Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J. Chem. Phys. 117(15), 6959–6969 (2002)

    Article  Google Scholar 

  68. J. Hattne, D. Fange, J. Elf, Stochastic reaction-diffusion simulation with MesoRD. Bioinformatics 21, 2923–2924 (2005)

    Article  Google Scholar 

  69. M. Hegland, C. Burden, L. Santoso, S. MacNamara, H. Booth, A solver for the stochastic master equation applied to gene regulatory networks. J. Comput. Appl. Math. 205(2), 708–724 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  70. A. Hellander, P. Lötstedt, Incorporating active transport of cellular cargo in stochastic mesoscopic models of living cells. Multiscale Model. Simul. 8(5), 1691–1714 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  71. S. Hellander, P. Lötstedt, Flexible single molecule simulation of reaction-diffusion processes. J. Comput. Phys. 230, 3948–3965 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  72. S. Hellander, L. Petzold, Reaction rates for a generalized reaction-diffusion master equation. Phys. Rev. E 93, 013307 (2016)

    Article  Google Scholar 

  73. A. Hellander, S. Hellander, P. Lötstedt, Coupled mesoscopic and microscopic simulation of stochastic reaction-diffusion processes in mixed dimensions. Multiscale Model. Simul. 10(2), 585–611 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  74. S. Hellander, A. Hellander, L. Petzold, Reaction-diffusion master equation in the microscopic limit. Phys. Rev. E 85, 042901 (2012)

    Article  Google Scholar 

  75. S. Hellander, A. Hellander, L. Petzold, Reaction rates for mesoscopic reaction-diffusion kinetics. Phys. Rev. E 91, 023312 (2015)

    Article  MathSciNet  Google Scholar 

  76. B.J. Henry, T.A.M. Langlands, S.L. Wearne, Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations. Phys. Rev. E 74, 031116 (2006)

    Article  MathSciNet  Google Scholar 

  77. I. Hepburn, W. Chen, S. Wils, E.D. Schutter, STEPS: efficient simulation of stochastic reaction-diffusion models in realistic morphologies. BMC Syst. Biol. 6, 36 (2012)

    Article  Google Scholar 

  78. B. Hepp, A. Gupta, M. Khammash, Adaptive hybrid simulations for multiscale stochastic reaction networks. J. Chem. Phys. 142(3), 034118 (2015)

    Google Scholar 

  79. F. Höfling, T. Franosch, Anomalous transport in the crowded world of biological cells. Rep. Progr. Phys. 76, 046602 (2013)

    Article  MathSciNet  Google Scholar 

  80. J.D. Humphrey, E.R. Dufresne, M.A. Schwartz, Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15(12), 802–812 (2014)

    Article  Google Scholar 

  81. S.A. Isaacson, The reaction-diffusion master equation as an asymptotic approximation of diffusion to a small target. SIAM J. Appl. Math. 70, 77–111 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  82. S.A. Isaacson, A convergent reaction-diffusion master equation. J. Chem. Phys. 139, 054101 (2013)

    Article  Google Scholar 

  83. S.A. Isaacson, C.S. Peskin, Incorporating diffusion in complex geometries into stochastic chemical kinetics simulations. SIAM J. Sci. Comput. 28(1), 47–74 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  84. T. Jahnke, An adaptive wavelet method for the chemical master equation. SIAM J. Sci. Comput. 31(6), 4373–4394 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  85. T. Jahnke, W. Huisinga, Solving the chemical master equation for monomolecular reaction systems analytically. J. Math. Biol. 54(1), 1–26 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  86. T. Jahnke, M. Krein, Error bound for piecewise deterministic processes modeling stochastic reaction systems. Multiscale Model. Simul. 10, 1119–1147 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  87. H.-W. Kang, T.G. Kurtz, Separation of time-scales and model reduction for stochastic reaction networks. Ann. Appl. Probab. 23, 529–583 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  88. J.R. Karr, J.C. Sanghvi, D.N. Macklin, M.V. Gutschow, J.M. Jacobs, B. Bolival Jr., N. Assad-Garcia, J.I. Glass, M.W. Covert, A whole-cell computational model predicts phenotype from genotype. Cell 150, 389–401 (2012)

    Article  Google Scholar 

  89. V. Kazeev, M. Khammash, M. Nip, C. Schwab, Direct solution of the chemical master equation using quantized tensor trains. PLoS Comput. Biol. 10(4), e1003359 (2014)

    Google Scholar 

  90. R.A. Kerr, T.M. Bartol, B. Kaminsky, M. Dittrich, J.-C.J. Chang, S.B. Baden, T.J. Sejnowski, J.R. Stiles, Fast Monte Carlo simulation methods for biological reaction-diffusion systems in solution and on surfaces. SIAM J. Sci. Comput. 30(6), 3126–3149 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  91. D.J. Kiviet, P. Nghe, N. Walker, S. Boulineau, V. Sunderlikova, S.J. Tans, Stochasticity of metabolism and growth at the single-cell level. Nature 514, 376–379 (2014)

    Article  Google Scholar 

  92. M. Klann, A. Ganguly, H. Koeppl, Hybrid spatial Gillespie and particle tracking simulation. Bioinformatics 28, i549–i555 (2012)

    Article  Google Scholar 

  93. M. Komorowski, M.J. Costa, D.A. Rand, M.P.H. Stumpf, Sensitivity, robustness, and identifiability in stochastic chemical kinetics models. Proc. Natl. Acad. Sci. U. S. A. 108(21), 8645–8650 (2011)

    Article  Google Scholar 

  94. S. Korotov, M. Křížek, P. Neittanmäki, Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle. Math. Comp. 70, 107–119 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  95. T.G. Kurtz, Solutions of ordinary differential equations as limits of pure jump Markov processes. J. Appl. Prob. 7, 49–58 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  96. T.G. Kurtz, Strong approximation theorems for density dependent Markov chains. Stoch. Proc. Appl. 6, 223–240 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  97. C. Lemerle, B.D. Ventura, L. Serrano, Space as the final frontier in stochastic simulations of biological systems. FEBS Lett. 579, 1789–1794 (2005)

    Article  Google Scholar 

  98. S. Liao, T. Vejchodsky, R. Erban, Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks. J. R. Soc. Interface 12, 20150233 (2015)

    Article  Google Scholar 

  99. G. Lillacci, M. Khammash, The signal within the noise: efficient inference of stochastic gene regulation models using fluorescence histograms and stochastic simulations. Bioinformatics 29(18), 2311–2319 (2013)

    Article  Google Scholar 

  100. J. Lipková, K.C. Zygalakis, S.J. Chapman, R. Erban, Analysis of Brownian dynamics simulations of reversible bimolecular reactions. SIAM J. Appl. Math. 71(3), 714–730 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  101. C.F. Lopez, J.L. Muhlich, J.A. Bachman, P.K. Sorger, Programming biological models in python using PySB. Mol. Syst. Biol. 9(1), 646 (2013)

    Google Scholar 

  102. P. Lötstedt, L. Meinecke, Simulation of stochastic diffusion via first exit times. J. Comput. Phys. 300, 862–886 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  103. A. Mahmutovic, D. Fange, O.G. Berg, J. Elf, Lost in presumption: stochastic reactions in spatial models. Nat. Methods 9(12), 1–4 (2012)

    Article  Google Scholar 

  104. T.T. Marquez-Lago, A. Leier, K. Burrage, Anomalous diffusion and multifractional Brownian motion: simulating molecular crowding and physical obstacles in systems biology. IET Syst. Biol. 6(4), 134–142 (2012)

    Article  Google Scholar 

  105. H.H. McAdams, A. Arkin, Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. U. S. A. 94, 814–819 (1997)

    Article  Google Scholar 

  106. D.A. McQuarrie, Stochastic approach to chemical kinetics. J. Appl. Prob. 4, 413–478 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  107. L. Meinecke, S. Engblom, A. Hellander, P. Lötstedt, Analysis and design of jump coefficients in discrete stochastic diffusion models. SIAM J. Sci. Comput. 38, A55–A83 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  108. R. Metzler, The future is noisy: the role of spatial fluctuations in genetic switching. Phys. Rev. Lett. 87, 068103 (2001)

    Article  Google Scholar 

  109. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  110. A. Milias-Argeitis, S. Engblom, P. Bauer, M. Khammash, Stochastic focusing coupled with negative feedback enables robust regulation in biochemical reaction networks. J. R. Soc. Interface 12(113), 1–10 (2015)

    Article  Google Scholar 

  111. M.S. Mommer, D. Lebiedz, Modeling subdiffusion using reaction diffusion systems. SIAM J. Appl. Math. 70(1), 112–132 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  112. A. Moraes, R. Tempone, P. Vilanova, Hybrid Chernoff tau-leap. Multiscale Model. Simul. 12(2), 581–615 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  113. A. Moraes, R. Tempone, P. Vilanova, A multilevel adaptive reaction-splitting simulation method for stochastic reaction networks. SIAM J. Sci. Comput. 38(4), A2091–A2117 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  114. B. Munsky, M. Khammash, The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 124(4), 044104 (2006)

    Google Scholar 

  115. B. Munsky, G. Neuert, A. van Oudenaarden, Using gene expression noise to understand gene regulation. Science 336(6078), 183–187 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  116. D.V. Nicolau Jr., J.F. Hancock, K. Burrage, Sources of anomalous diffusion on cell membranes: a Monte Carlo study. Biophys. J. 92, 1975–1987 (2007)

    Article  Google Scholar 

  117. T. Oppelstrup, V.V. Bulatov, A. Donev, M.H. Kalos, G.H. Gilmer, B. Sadigh, First-passage kinetic Monte Carlo method. Phys. Rev. E 80, 066701 (2009)

    Article  MATH  Google Scholar 

  118. J. Pahle, Biochemical simulations: stochastic, approximate stochastic and hybrid approaches. Brief. Bioinform. 10, 53–64 (2009)

    Article  Google Scholar 

  119. J. Paulsson, Summing up the noise in gene networks. Nature 427, 415–418 (2004)

    Article  Google Scholar 

  120. F. Persson, M. Lindén, C. Unosson, J. Elf, Extracting intracellular diffusive states and transition rates from single-molecule tracking data. Nat. Methods 10, 265–269 (2013)

    Article  Google Scholar 

  121. A. Raj, A. van Oudenaarden, Nature, nurture, or chance: Stochastic gene expression and its consequences. Cell 135(2), 216–226 (2008)

    Article  Google Scholar 

  122. M. Rathinam, L.R. Petzold, Y. Cao, D. Gillespie, Consistency and stability of tau-leaping schemes for chemical reaction systems. Multiscale Model. Simul. 4, 867–895 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  123. M. Robinson, M. Flegg, R. Erban, Adaptive two-regime method: application to front propagation. J. Chem. Phys. 140, 124109 (2014)

    Article  Google Scholar 

  124. M. Robinson, S.S. Andrews, R. Erban, Multiscale reaction-diffusion simulations with Smoldyn. Bioinformatics 31(14), 2406–2408 (2015)

    Article  Google Scholar 

  125. J. Ruess, A. Milias-Argeitis, J. Lygeros, Designing experiments to understand the variability in biochemical reaction networks. J. R. Soc. Interface 10(88) (2013)

    Google Scholar 

  126. J. Ruess, F. Parise, A. Milias-Argeitis, M. Khammash, J. Lygeros, Iterative experiment design guides the characterization of a light-inducible gene expression circuit. Proc. Natl. Acad. Sci. U. S. A. 112(26), 8148–8153 (2015)

    Article  Google Scholar 

  127. H. Salis, Y. Kaznessis, Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. J. Chem. Phys. 122, 054103 (2005)

    Article  Google Scholar 

  128. M.J. Saxton, A biological interpretation of transient anomalous subdiffusion. I. Qualitative model. Biophys. J. 92, 1178–1191 (2007)

    Google Scholar 

  129. D. Schnoerr, G. Sanguinetti, R. Grima, Approximation and inference methods for stochastic biochemical kinetics - a tutorial review. Technical report, University of Edinburgh, Edinburgh (2016). http://arxiv.org/abs/1608.06582

    MATH  Google Scholar 

  130. J. Schöneberg, A. Ullrich, F. Noé, Simulation tools for particle-based reaction-diffusion dynamics in continuous space. BMC Biophysics 7, 11 (2014)

    Article  Google Scholar 

  131. B. Sportisse, An analysis of operator splitting techniques in the stiff case. J. Comput. Phys. 161, 140–168 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  132. G. Strang, On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  133. A.B. Stundzia, C.L. Lumsden, Stochastic simulation of coupled reaction-diffusion processes. J. Comput. Phys. 127, 196–207 (1996)

    Article  MATH  Google Scholar 

  134. M. Sturrock, A.J. Terry, D.P. Xirodimas, A.M. Thompson, M.A. Chaplain, Influence of the nuclear membrane, active transport, and cell shape on the Hes1 and p53-Mdm2 pathways: insights from spatio-temporal modelling. Bull. Math. Biol. 74, 1531–1579 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  135. K. Takahashi, S.N.V. Arjunan, M. Tomita, Space in systems biology of signaling pathways–towards intracellular molecular crowding in silico. FEBS Lett. 579, 1782–1788 (2005)

    Google Scholar 

  136. K. Takahashi, S. Tănase-Nicola, P.R. ten Wolde, Spatio-temporal correlations can drastically change the response of a MAPK pathway. Proc. Natl. Acad. Sci. U. S. A. 107(6), 2473–2478 (2010)

    Article  Google Scholar 

  137. P.R. Taylor, R.E. Baker, M.J. Simpson, C.A. Yates, Coupling volume-excluding compartment-based models of diffusion at different scales: voronoi and pseudo-compartment approaches. J. R. Soc. Interface 13(120), 20160336 (2016)

    Google Scholar 

  138. M. Thattai, A. van Oudenaarden, Intrinsic noise in gene regulatory networks. Proc. Nat. Acad. Sci. U. S. A. 98, 8614–8619 (2001)

    Article  Google Scholar 

  139. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems (Springer, Berlin, 1997)

    Book  MATH  Google Scholar 

  140. T. Tian, K. Burrage, Binomial leap methods for simulating stochastic chemical kinetics. J. Chem. Phys. 121, 10356–10364 (2004)

    Article  Google Scholar 

  141. M. Tomita. Whole-cell simulation: a grand challenge for the 21st century. Trends Biotechnol. 19(6), 205–210 (2001)

    Article  MathSciNet  Google Scholar 

  142. N.G. van Kampen, Stochastic Processes in Physics and Chemistry, 5th edn. (Elsevier, Amsterdam, 2004)

    MATH  Google Scholar 

  143. J.S. van Zon, P.R. ten Wolde, Green’s-function reaction dynamics: a particle-based approach for simulating biochemical networks in time and space. J. Chem. Phys. 123, 234910 (2005)

    Article  Google Scholar 

  144. M. von Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Z. Phys. Chem. 92, 129–168 (1917)

    Google Scholar 

  145. M. Vigelius, B. Meyer, Multi-dimensional, mesoscopic Monte Carlo simulations of inhomogeneous reaction-drift-diffusion systems on graphics-processing units. PLoS One 7(4), 1–13 (2012)

    Article  Google Scholar 

  146. J.M.G. Vilar, H.Y. Kueh, N. Barkai, S. Leibler, Mechanism of noise-resistance in genetic oscillators. Proc. Nat. Acad. Sci. 99, 5988–5992 (2002)

    Article  Google Scholar 

  147. M. Watabe, S.N.V. Arjunan, S. Fukushima, K. Iwamoto, J. Kozuka, S. Matsuoka, Y. Shindo, M. Ueda, K. Takahashi, A computational framework for bioimaging simulation. PLoS One 10(7), 1–19 (2015)

    Article  Google Scholar 

  148. C. Zechner, J. Ruess, P. Krenn, S. Pelet, M. Peter, J. Lygeros, H. Koeppl, Moment-based inference predicts bimodality in transient gene expression. Proc. Natl. Acad. Sci. U. S. A. 109(21), 8340–8345 (2012)

    Article  Google Scholar 

  149. C. Zechner, M. Unger, S. Pelet, M. Peter, H. Koeppl, Scalable inference of heterogeneous reaction kinetics from pooled single-cell recordings. Nat. Methods 11, 197–202 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

Generous support has been received from the Swedish Research Council, the eSSENCE strategic collaboration on e-Science, the UPMARC Linnaeus Center of Excellence, and the NIH under grant no. 1R01EB014877-01. The contents are solely the responsibility of the authors and do not necessarily reflect the opinions of these agencies. The authors would also like to thank the Isaac Newton Institute for Mathematical Sciences, Cambridge, for support and hospitality during the programme Stochastic Dynamical Systems in Biology: Numerical Methods and Applications where this paper was conceived. This programme was supported by EPSRC grant no EP/K032208/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Lötstedt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Engblom, S., Hellander, A., Lötstedt, P. (2017). Multiscale Simulation of Stochastic Reaction-Diffusion Networks. In: Holcman, D. (eds) Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-62627-7_3

Download citation

Publish with us

Policies and ethics