Skip to main content
Log in

Evolutionarily Stable and Convergent Stable Strategies in Reaction–Diffusion Models for Conditional Dispersal

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider a mathematical model of two competing species for the evolution of conditional dispersal in a spatially varying, but temporally constant environment. Two species are different only in their dispersal strategies, which are a combination of random dispersal and biased movement upward along the resource gradient. In the absence of biased movement or advection, Hastings showed that the mutant can invade when rare if and only if it has smaller random dispersal rate than the resident. When there is a small amount of biased movement or advection, we show that there is a positive random dispersal rate that is both locally evolutionarily stable and convergent stable. Our analysis of the model suggests that a balanced combination of random and biased movement might be a better habitat selection strategy for populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Belgacem, F., & Cosner, C. (1995). The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environment. Can. Appl. Math. Q., 3, 379–397.

    MathSciNet  MATH  Google Scholar 

  • Berestycki, H., Diekmann, O., Nagelkerke, C. J., & Zegeling, P. A. (2009). Can a species keep pace with a shifting climate? Bull. Math. Biol., 71, 399–429.

    Article  MathSciNet  MATH  Google Scholar 

  • Cantrell, R. S., & Cosner, C. (2003). Series in mathematical and computational biology. Spatial ecology via reaction–diffusion equations. Chichester: Wiley.

    MATH  Google Scholar 

  • Cantrell, R. S., Cosner, C., & Lou, Y. (2006). Movement towards better environments and the evolution of rapid diffusion. Math. Biosci., 204, 199–214.

    Article  MathSciNet  MATH  Google Scholar 

  • Cantrell, R. S., Cosner, C., & Lou, Y. (2007). Advection mediated coexistence of competing species. Proc. R. Soc. Edinb. A, 137, 497–518.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, X., Hambrock, R., & Lou, Y. (2008). Evolution of conditional dispersal, a reaction–diffusion–advection model. J. Math. Biol., 57, 361–386.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, X., Lam, K.-Y., & Lou, Y. (2012). Dynamics of a reaction–diffusion–advection model for two competing species. Discrete Contin. Dyn. Syst., Ser. A, 32, 3841–3859.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, X., & Lou, Y. (2008). Principal eigenvalue and eigenfunctions of an elliptic operator with large advection and its application to a competition model. Indiana Univ. Math. J., 57, 627–657.

    Article  MathSciNet  MATH  Google Scholar 

  • Clobert, J., Danchin, E., Dhondt, A. A., & Nichols, J. D. (Eds.) (2001). Dispersal. Oxford: Oxford University Press.

    Google Scholar 

  • Cosner, C., & Lou, Y. (2003). Does movement toward better environments always benefit a population? J. Math. Anal. Appl., 277, 489–503.

    Article  MathSciNet  MATH  Google Scholar 

  • Dieckmann, U., & Law, R. (1996). The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol., 34, 579–612.

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann, O. (2003). A beginner’s guide to adaptive dynamics. Banach Cent. Publ., 63, 47–86.

    Article  MathSciNet  MATH  Google Scholar 

  • Dockery, J., Hutson, V., Mischaikow, K., & Pernarowski, M. (1998). The evolution of slow dispersal rates: a reaction–diffusion model. J. Math. Biol., 37, 61–83.

    Article  MathSciNet  MATH  Google Scholar 

  • Doligez, B., Cadet, C., Danchin, E., & Boulinier, T. (2003). When to use public information for breeding habitat selection? The role of environmental predictability and density dependence. Anim. Behav., 66, 973–988.

    Article  Google Scholar 

  • Geritz, S. A. H., & Gyllenberg, M. (2008). The mathematical theory of adaptive dynamics. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Geritz, S. A. H., Kisdi, E., Meszena, G., & Metz, J. A. J. (1998). Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol., 12, 35–57.

    Article  Google Scholar 

  • Hambrock, R., & Lou, Y. (2009). The evolution of conditional dispersal strategy in spatially heterogeneous habitats. Bull. Math. Biol., 71, 1793–1817.

    Article  MathSciNet  MATH  Google Scholar 

  • Hastings, A. (1983). Can spatial variation alone lead to selection for dispersal? Theor. Popul. Biol., 24, 244–251.

    Article  MathSciNet  MATH  Google Scholar 

  • Hutson, V., Mischaikow, K., & Polacik, P. (2001). The evolution of dispersal rates in a heterogeneous time-periodic environment. J. Math. Biol., 43, 501–533.

    Article  MathSciNet  MATH  Google Scholar 

  • Kawasaki, K., Asano, K., & Shigesada, N. (2012). Impact of directed movement on invasive spread in periodic patchy environments. Bull. Math. Biol., 74, 1448–1467.

    Article  MathSciNet  MATH  Google Scholar 

  • Kirkland, S., Li, C.-K., & Schreiber, S. J. (2006). On the evolution of dispersal in patchy environments. SIAM J. Appl. Math., 66, 1366–1382.

    Article  MathSciNet  MATH  Google Scholar 

  • Lam, K.-Y. (2011). Concentration phenomena of a semilinear elliptic equation with large advection in an ecological model. J. Differ. Equ., 250, 161–181.

    Article  MathSciNet  MATH  Google Scholar 

  • Lam, K.-Y. (2012). Limiting profiles of semilinear elliptic equations with large advection in population dynamics II. SIAM J. Math. Anal., 44, 1808–1830.

    Article  MathSciNet  MATH  Google Scholar 

  • Lam, K.-Y., & Lou, Y. (2013). Evolution of conditional dispersal: evolutionarily stable strategies in spatial models. J. Math Biol. doi:10.1007/s00285-013-0650-1.

    MathSciNet  MATH  Google Scholar 

  • Lam, K.-Y., & Ni, W.-M. (2010). Limiting profiles of semilinear elliptic equations with large advection in population dynamics. Discrete Contin. Dyn. Syst., Ser. A, 28, 1051–1067.

    Article  MathSciNet  MATH  Google Scholar 

  • Levin, S. A. (1976). Population dynamic models in heterogeneous environments. Annu. Rev. Ecol. Syst., 7, 287–310.

    Article  Google Scholar 

  • Lutscher, F., Lewis, M. A., & McCauley, E. (2006). Effects of heterogeneity on spread and persistence in rivers. Bull. Math. Biol., 68, 2129–2160.

    Article  MathSciNet  MATH  Google Scholar 

  • Lutscher, F., McCauley, E., & Lewis, M. A. (2007). Spatial patterns and coexistence mechanisms in systems with unidirectional flow. Theor. Popul. Biol., 71, 267–277.

    Article  MATH  Google Scholar 

  • Maynard Smith, J., & Price, G. (1973). The logic of animal conflict. Nature, 246, 15–18.

    Article  Google Scholar 

  • McPeek, M. A., & Holt, R. D. (1992). The evolution of dispersal in spatially and temporally varying environments. Am. Nat., 140, 1010–1027.

    Article  Google Scholar 

  • Ni, W.-M. (2011). CBMS reg. conf. ser. appl. math.: Vol. 82. The mathematics of diffusion. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  • Okubo, A., & Levin, S. A. (2001). Interdisciplinary applied mathematics: Vol. 14. Diffusion and ecological problems: modern perspectives (2nd ed.). Berlin: Springer.

    Book  MATH  Google Scholar 

  • Payne, L. E., & Weinberger, H. F. (1960). An optimal Poincare inequality for convex domains. Arch. Ration. Mech. Anal., 5, 286–292.

    Article  MathSciNet  MATH  Google Scholar 

  • Potapov, A. B., & Lewis, M. A. (2004). Climate and competition: the effect of moving range boundaries on habitat invasibility. Bull. Math. Biol., 66, 975–1008.

    Article  MathSciNet  Google Scholar 

  • Ronce, O. (2007). How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu. Rev. Ecol. Syst., 38, 231–253.

    Article  Google Scholar 

  • Shigesada, N., & Kawasaki, K. (1997). Oxford series in ecology and evolution. Biological invasions: theory and practice. Oxford: Oxford University Press.

    Google Scholar 

  • Turchin, P. (1998). Qualitative analysis of movement. Sunderland: Sinauer.

    MATH  Google Scholar 

  • Vasilyeva, O., & Lutscher, F. (2012). Competition in advective environments. Bull. Math. Biol., 74, 2935–2958.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the NSF grant DMS-1021179 and has been supported in part by the Mathematical Biosciences Institute and the National Science Foundation under grant DMS-0931642. The author would like to acknowledge helpful discussions with Frithjof Lutscher and the hospitality of Center for Partial Differential Equations of East China Normal University, Shanghai, China, where part of this work was done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to King-Yeung Lam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lam, KY., Lou, Y. Evolutionarily Stable and Convergent Stable Strategies in Reaction–Diffusion Models for Conditional Dispersal. Bull Math Biol 76, 261–291 (2014). https://doi.org/10.1007/s11538-013-9901-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9901-y

Keywords

Navigation