Skip to main content
Log in

Reaction-Diffusion Patterns in Plant Tip Morphogenesis: Bifurcations on Spherical Caps

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We study a chemical reaction-diffusion model (the Brusselator) for pattern formation on developing plant tips. A family of spherical cap domains is used to represent tip flattening during development. Applied to conifer embryos, we model the chemical prepatterning underlying cotyledon (“seed leaf”) formation, and demonstrate the dependence of patterns on tip flatness, radius, and precursor concentrations. Parameters for the Brusselator in spherical cap domains can be chosen to give supercritical pitchfork bifurcations of patterned solutions of the nonlinear reaction-diffusion system that correspond to the cotyledon patterns that appear on the flattening tips of conifer embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baker, R. E., & Maini, P. K. (2007). A mechanism for morphogen-controlled domain growth. J. Math. Biol., 54, 597–622.

    Article  MathSciNet  MATH  Google Scholar 

  • Barrass, I., Crampin, E. G., & Maini, P. K. (2006). Mode transitions in a model reaction-diffusion system driven by domain growth and noise. Bull. Math. Biol., 68, 981–995.

    Article  MathSciNet  Google Scholar 

  • Barreira, R., Elliott, C. M., & Madzvamuse, A. (2011). The surface finite element method for pattern formation on evolving biological surfaces. J. Math. Biol., 63, 1095–1119.

    Article  MathSciNet  MATH  Google Scholar 

  • Bauer, H. F. (1986). Tables of the roots of the associated Legendre function with respect to degree. Math. Comput., 46, 601–602; S29–S41.

    Article  MATH  MathSciNet  Google Scholar 

  • Bilsborough, G. D., Runions, A., Barkoulas, M., Jenkins, H. W., Hasson, A., Galinha, C., Laufs, P., Hay, A., Prusinkiewicz, P., & Tsiantis, M. (2011). Model for the regulation of Arabidopsis thaliana leaf margin development. Proc. Natl. Acad. Sci. USA, 108, 3424–3429.

    Article  Google Scholar 

  • Carr, J. (1981). Applications of centre manifold theory. New York: Springer.

    Book  MATH  Google Scholar 

  • Cosgrove, D. J. (1996). Plant cell enlargement and the action of expansins. BioEssays, 18, 533–540.

    Article  Google Scholar 

  • Crampin, E. J., Hackborn, W. W., & Maini, P. K. (2002). Pattern formation in reaction-diffusion models with nonuniform domain growth. Bull. Math. Biol., 64, 747–769.

    Article  Google Scholar 

  • de Reuille, P. B., Bohn-Courseau, I., Ljung, K., Morin, H., Carraro, N., Godin, C., & Traas, J. (2006). Computer simulations reveal properties of the cell-cell signalling network at the shoot apex in Arabidopsis. Proc. Natl. Acad. Sci. USA, 103, 1627–1632.

    Article  Google Scholar 

  • Digiuni, S., Schellmann, S., Geier, F., Greese, B., Pesch, M., Wester, K., Dartan, B., Mach, V., Srinivas, B. P., Timmer, J., Fleck, C., & Hülskamp, M. (2008). A competitive complex formation mechanism underlies trichome patterning in Arabidopsis leaves. Mol. Syst. Biol., 4, 217.

    Article  Google Scholar 

  • Fleming, A. J., McQueen-Mason, S., Mandel, T., & Kuhlemeier, C. (1997). Induction of leaf primordia by the cell wall protein expansin. Science, 276, 1415–1418.

    Article  Google Scholar 

  • Fujita, H., Toyokura, K., Okada, K., & Kawaguchi, M. (2011). Reaction-diffusion mechanism in shoot apical meristem of plants. PLoS ONE, 6, e18243.

    Article  Google Scholar 

  • Garzón-Alvarado, D. A., Martinez, A. M. R., & Segrera, D. L. L. (2012). Appearance and formation of seed and pericarp may be explained by a reaction-diffusion mechanism? A mathematical modeling. Math. Comput. Model., 55, 853–860.

    Article  MATH  MathSciNet  Google Scholar 

  • Gierer, A., & Meinhardt, H. (1972). A theory of biological pattern formation. Kybernetik, 12, 30–39.

    Article  MATH  Google Scholar 

  • Hakman, I., Hallberg, H., & Palovaara, J. (2009). The polar auxin transport inhibitor NPA impairs embryo morphology and increases the expression of an auxin efflux facilitator protein PIN during Picaea abies somatic embryo development. Tree Physiol., 29, 483–496.

    Article  Google Scholar 

  • Harrison, L. G. (2011). The shaping of life. Cambridge: Cambridge University Press.

    Google Scholar 

  • Harrison, L. G., & Hillier, N. A. (1985). Quantitative control of Acetabularia morphogenesis by extracellular calcium: a test of kinetic theory. J. Theor. Biol., 114, 177–192.

    Article  Google Scholar 

  • Harrison, L. G., & Kolar, M. (1988). Coupling between reaction-diffusion prepattern and expressed morphogenesis, applied to desmids and dasyclads. J. Theor. Biol., 130, 493–515.

    Article  MathSciNet  Google Scholar 

  • Harrison, L. G., & von Aderkas, P. (2004). Spatially quantitative control of the number of cotyledons in a clonal population of somatic embryos of hybrid larch Larix × leptoeuropaea. Ann. Bot., 93, 423–434.

    Article  Google Scholar 

  • Harrison, L. G., Snell, J., Verdi, R., Vogt, D. E., Zeiss, G. D., & Green, B. R. (1981). Hair morphogenesis in Acetabularia mediterranea: temperature-dependent spacing and models of morphogen waves. Protoplasma, 106, 211–221.

    Article  Google Scholar 

  • Harrison, L. G., Graham, K. T., & Lakowski, B. C. (1988). Calcium localization during Acetabularia whorl formation: evidence supporting a two-stage hierarchical mechanism. Development, 104, 255–262.

    Google Scholar 

  • Harrison, L. G., Donaldson, G., Lau, W., Lee, M., Lin, B. P., Lohachitranont, S., Setyawati, I., & Yue, J. (1997). CaEGTA uncompetitively inhibits calcium activation of whorl morphogenesis in Acetabularia. Protoplasma, 196, 190–196.

    Article  Google Scholar 

  • Harrison, L. G., Wehner, S., & Holloway, D. M. (2001). Complex morphogenesis of surfaces: theory and experiment on coupling of reaction-diffusion to growth. Faraday Discuss., 120, 277–294.

    Article  Google Scholar 

  • Harrison, L. G., Adams, R. J., & Holloway, D. M. (2012). Dynamic regulation of growing domains for elongating and branching morphogenesis in plants. Biosystems, 109, 488–497.

    Article  Google Scholar 

  • Holloway, D. M. (2010). The role of chemical dynamics in plant morphogenesis. Biochem. Soc. Trans., 38, 645–650.

    Article  Google Scholar 

  • Holloway, D. M. (2012). The chemical kinetics of shape determination in plants. In V. Patel (Ed.), Chemical kinetics (pp. 203–226). Rijeka: InTech. Available at http://www.intechopen.com/articles/show/title/the-chemical-kinetics-of-shape-determination-in-plants.

    Google Scholar 

  • Holloway, D. M., & Harrison, L. G. (1995). Order and localization in reaction-diffusion pattern. Physica A, 222, 210–233.

    Article  Google Scholar 

  • Holloway, D. M., & Harrison, L. G. (1999). Algal morphogenesis: modelling interspecific variation in Micrasterias with reaction-diffusion patterned catalysis of cell surface growth. Philos. Trans. R. Soc. Lond. B, 354, 417–433.

    Article  Google Scholar 

  • Holloway, D. M., & Harrison, L. G. (2008). Pattern selection in plants: coupling chemical dynamics to surface growth in three dimensions. Ann. Bot., 101, 361–374.

    Article  Google Scholar 

  • Iron, D., Ward, M. J., & Wei, J. C. (2001). The stability of spike solutions to the one-dimensional Gierer-Meinhardt model. Physica D, 150, 25–62.

    MathSciNet  MATH  Google Scholar 

  • Jönsson, H., Heisler, M. G., Reddy, G. V., Agrawal, V., Gor, V., Shapiro, B. E., Mjolsness, E., & Meyerowitz, E. M. (2005). Modeling the organization of the WUSCHEL expression domain in the shoot apical meristem. Bioinformatics, 21[Suppl.], i232–i240.

    Article  Google Scholar 

  • Jönsson, H., Heisler, M. G., Shapiro, B. E., Mjolsness, E., & Meyerowitz, E. M. (2006). An auxin-driven polarized transport model for phyllotaxis. Proc. Natl. Acad. Sci. USA, 103, 1633–1638.

    Article  Google Scholar 

  • Lacalli, T. C. (1981). Dissipative structures and morphogenetic pattern in unicellular algae. Philos. Trans. R. Soc. Lond. B, 294, 547–588.

    Article  Google Scholar 

  • Madzvamuse, A., Gaffney, E. A., & Maini, P. K. (2010). Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains. J. Math. Biol., 61, 113–164.

    Article  MathSciNet  MATH  Google Scholar 

  • Meinhardt, H. (1982). Models of biological pattern formation. London: Academic Press. Available at http://www.eb.tuebingen.mpg.de/departments/former-departments/h-meinhardt/82-book/Bur82.htm.

    Google Scholar 

  • Milani, P., Gholamirad, M., Traas, J., Arnéodo, A., Boudaoud, A., Argoul, F., & Hamant, O. (2011). In vivo analysis of local wall stiffness at the shoot apical meristem in Arabidopsis using atomic force microscopy. Plant J., 67, 1116–1123.

    Article  Google Scholar 

  • Miura, T., Shiota, K., Morriss-Kay, G., & Maini, P. K. (2006). Mixed-mode pattern in Doublefoot mutant mouse limb—Turing reaction-diffusion model on a growing domain during limb develpment. J. Theor. Biol., 240, 562–573.

    Article  MathSciNet  Google Scholar 

  • Nagata, W., Harrison, L. G., & Wehner, S. (2003). Reaction-diffusion models of growing plant tips: bifurcations on hemispheres. Bull. Math. Biol., 65, 571–607.

    Article  Google Scholar 

  • Neville, A. A., Matthews, P. C., & Byrne, H. M. (2006). Interactions between pattern formation and domain growth. Bull. Math. Biol., 68, 1975–2003.

    Article  MathSciNet  MATH  Google Scholar 

  • Palin, R., & Geitmann, A. (2012). The role of pectin in plant morphogenesis. Biosystems, 109, 397–402.

    Article  Google Scholar 

  • Palin, R. J. (2011). A comparison of cell wall properties of Arabidopsis thaliana. PhD thesis, University of Birmingham.

  • Peaucelle, A., Braybrook, S. A., Le Guillou, L., Bron, E., Kuhlemeier, C., & Höfte, H. (2011). Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr. Biol., 21, 1720–1726.

    Article  Google Scholar 

  • Plaza, R. G., Sánchez-Garduño, F., Padilla, P., Barrio, R. A., & Maini, P. K. (2004). The effect of growth and curvature on pattern formation. J. Dyn. Differ. Equ., 16, 1093–1121.

    Article  MATH  MathSciNet  Google Scholar 

  • Prigogine, I., & Lefever, R. (1968). Symmetry-breaking instabilities in dissipative systems. II. J. Chem. Phys., 48, 1695–1700.

    Article  Google Scholar 

  • Routier-Kierzkowska, A.-L., Weber, A., Kochova, P., Felekis, D., Nelson, B. J., Kuhlemeier, C., & Smith, R. S. (2012). Cellular force microscopy for in vivo measurements of plant tissue mechanics. Plant Physiol., 158, 1514–1522.

    Article  Google Scholar 

  • Schnakenberg, J. (1979). Simple chemical reaction systems with limit cycle behaviour. J. Theor. Biol., 81, 389–400.

    Article  MathSciNet  Google Scholar 

  • Smith, R. S., Guyomarch, S., Mandel, T., Reinhardt, D., Kuhlemeier, C., & Prusinkiewicz, P. (2006). A plausible model of phyllotaxis. Proc. Natl. Acad. Sci. USA, 103, 1301–1306.

    Article  Google Scholar 

  • Turing, A. (1952). The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B, 237, 37–72.

    Article  Google Scholar 

  • van Mourik, S., Kaufmann, K., van Dijk, A. D. J., Angenent, G. C., Merks, R. M. H., & Molenaar, J. (2012). Simulation of organ patterning on the floral meristem using a polar auxin transport model. PLoS ONE, 7, e28762.

    Article  Google Scholar 

  • von Aderkas, P. (2002). In vitro phenotypic variation in larch cotyledon number. Int. J. Plant Sci., 163, 301–307.

    Article  Google Scholar 

  • Wolf, S., & Greiner, S. (2012). Growth control by cell wall pectins. Protoplasma, 249(Suppl. 2), S169–S175.

    Article  Google Scholar 

Download references

Acknowledgements

We thank NSERC (Canada), Isfahan University of Technology and British Columbia Institute of Technology for financial support, T.C. Lacalli for stimulating discussions, and P. von Aderkas for the images in Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne Nagata.

Appendix: Reduction to the Bifurcation Equation

Appendix: Reduction to the Bifurcation Equation

In this Appendix, we outline the reduction of the Brusselator system (4)–(6) to the bifurcation equation (22),

$$\dot{x}=\sigma_{\max}x+Cx^3, $$

and in particular the calculation of the cubic coefficient C. The calculation is standard, but it seems useful to give some details. For theoretical background, see, e.g., Carr (1981).

First, we choose parameter values so that all the eigenvalues σ of the linearized Brusselator (12)–(13) are real, and the largest eigenvalue σ max is 0 and corresponds to a normal mode with mode numbers m=m c and n=n c . For example, we could use the values (17)–(18), \(A=A^{\max}_{\sigma=0}=76.5466\), γ=γ c =0.5, R=R c =0.981310, then m c =5 and n c =1. We consider only vector functions U=(U(θ,ϕ,t),V(θ,ϕ,t)) that satisfy the homogeneous Dirichlet boundary conditions

$$U(\arcsin\gamma_c,\phi,t)=0,\qquad V(\arcsin\gamma_c,\phi,t)=0, \quad \mbox{for all $0\leq\phi\leq2\pi$, $t>0$}. $$

Due to the symmetries (7), we may simplify our calculations by additionally restricting to functions of spherical polar coordinates (θ,ϕ) that are even in ϕ about ϕ=0. Then we can choose a real normal mode U (0) (the real part of a complex normal mode), and both the center eigenspace E c and the local center manifold \(W_{\mathrm{loc}}^{c}\) become one-dimensional, parameterized by the real variable x.

We solve the linear system

$$ \left ( \begin{array}{cc} -D_X\mu_{m_c,n_c}+k_1 & k_2 \\ k_3 & -D_Y\mu_{m_c,n_c}+k_4 \end{array} \right ) \left ( \begin{array}{c} u^{(0)} \\ v^{(0)} \end{array} \right ) = \left ( \begin{array}{c} 0 \\ 0 \end{array} \right ), $$

finding a specific normal mode

$$ \mathbf{U}^{(0)}= \left ( \begin{array}{c} u^{(0)} \\ v^{(0)} \end{array} \right ) \cos (m_c\phi) \, P^{m_c}_{\lambda_{m_c,n_c}(\gamma_c)}(\cos\theta), $$
(23)

where

$$u^{(0)}=\frac{2k_2}{N^{(0)}}, \qquad v^{(0)}=\frac{2k_5}{N^{(0)}}, \quad k_5=D_X\mu_{m_c,n_c}-k_1, $$

and

$$N^{(0)}=\sqrt{ M\bigl(k_2^2+k_5^2 \bigr)},\qquad M= \int_0^{\arcsin\gamma_c} \bigl[P^{m_c}_{\lambda_{m_c,n_c}(\gamma_c)}(\cos\theta) \bigr]^2\sin\theta \,d\theta. $$

For any two vector functions U j =(U j (θ,ϕ,t),V j (θ,ϕ,t)), j=1, 2, we define their inner product as the integral

$$\begin{aligned} &\langle \mathbf{U}_1,\mathbf{U}_2 \rangle\\ &\quad =\int _0^{2\pi}\int_0^{\arcsin\gamma_c} \bigl[U_1(\theta,\phi,t)U_2(\theta,\phi,t) +V_1(\theta,\phi,t)V_2(\theta,\phi,t)\bigr] \sin\theta \,d\theta\,d\phi. \end{aligned}$$

We solve the adjoint linear system

$$ \left ( \begin{array}{cc} -D_X\mu_{m_c,n_c}+k_1 & k_3 \\ k_2 & -D_Y\mu_{m_c,n_c}+k_4 \end{array} \right ) \left ( \begin{array}{c} u^{(*)} \\ v^{(*)} \end{array} \right ) = \left (\begin{array}{c} 0 \\ 0 \end{array} \right ), $$

and find the adjoint normal mode

$$\mathbf{U}^{(*)}= \left ( \begin{array}{c} u^{(*)} \\ v^{(*)} \end{array} \right ) \cos (m_c \phi) \, P^{m_c}_{\lambda_{m_c,n_c}(\gamma_c)}(\cos\theta) $$

where

$$u^{(*)}=\frac{k_3}{N^{(*)}},\qquad v^{(*)}=\frac{k_5}{N^{(*)}}, $$

and

$$N^{(*)}=2\pi \sqrt{M}\,\frac{k_2k_3+k_5^2}{\sqrt{k_2^2+k_5^2}}. $$

The normalization constant N (∗) for the adjoint normal mode is chosen so that

$$\bigl\langle \mathbf{U}^{(0)},\mathbf{U}^{(*)} \bigr\rangle = 1. $$

We can then define the projection P c of any vector function U onto the normal mode U (0) by

$$\mathbf{P}^c\,\mathbf{U}=x\mathbf{U}^{(0)}, $$

where

$$x=\bigl\langle\mathbf{U},\mathbf{U}^{(*)}\bigr\rangle. $$

We can expand a solution U of (20) near the patternless solution U=0 in a Taylor series in the real variable x about x=0 as

$$\mathbf{U}=x\mathbf{U}^{(0)}+x^2\mathbf{U}^{(1)}+ \mathcal{O}\bigl(x^3\bigr), $$

where terms at second and higher orders in x are orthogonal to U (∗). Inserting this Taylor series expansion into the evolution equation (20), using the projection P c and collecting coefficients of powers of x, we find at second order in x that U (1) is the unique solution to the nonhomogeneous linear equation

$$ \mathbf{A}\mathbf{U}^{(1)}= -\bigl(\mathbf{I}-\mathbf{P}^c\bigr)\mathbf{B} \bigl(\mathbf{U}^{(0)},\mathbf{U}^{(0)}\bigr). $$
(24)

At third order in x, we find that the cubic coefficient C in the bifurcation equation (22) is given by

$$ C=2\bigl\langle\mathbf{B}\bigl(\mathbf{U}^{(0)}, \mathbf{U}^{(1)}\bigr),\mathbf{U}^{(*)}\bigr\rangle +\bigl\langle \mathbf{C}\bigl(\mathbf{U}^{(0)},\mathbf{U}^{(0)}, \mathbf{U}^{(0)}\bigr),\mathbf{U}^{(*)}\bigr\rangle. $$
(25)

Substituting the normal mode (23) into the right-hand side of the nonhomogeneous equation (24), we have

$$ \bigl(\mathbf{I}-\mathbf{P}^c\bigr) \mathbf{B}\bigl(\mathbf{U}^{(0)},\mathbf{U}^{(0)}\bigr) = \left ( \begin{array}{c} 1 \\ -1 \end{array} \right ) 2\delta \bigl[\,1+\cos (2m_c\phi)\, \bigr] \, \bigl[P^{m_c}_{\lambda_{m_c,n_c}(\gamma_c)}(\cos\theta) \bigr]^2, $$
(26)

where

$$\delta= \biggl(\frac{bBd}{aA}k_2^2+ \frac{2aAc}{d}k_2k_5 \biggr) \bigl(N^{(0)}\bigr)^{-2}, $$

and then (24) can be solved for U (1) using infinite normal mode series expansions

$$\begin{aligned} \bigl[P^{m_c}_{\lambda_{m_c,n_c}(\gamma_c)}(\cos\theta) \bigr]^2&= \sum_{n=1}^\infty c_{0,n}P^0_{\lambda_{0,n}(\gamma_c)}(\cos\theta) , \\ \cos (2m_c\phi)\, \bigl[P^{m_c}_{\lambda_{m_c,n_c}(\gamma_c)}(\cos\theta) \bigr]^2&= \cos (2m_c\phi)\sum _{n=1}^\infty c_{2m_c,n}P^{2m_c}_{\lambda_{2m_c,n}(\gamma_c)}( \cos\theta). \end{aligned} $$

In practice, if δ≠0, we approximate the solution U (1) using truncated, finite normal mode series expansions.

If we fix the parameters D X , D Y , a, b, B, and c, and then choose other parameters so that (16), (19), and \(A=A^{\max}_{\sigma=0}\) hold, then the coefficient δ in (26) can be expressed as a function of the remaining parameter d. It is easy to show in this case that if

$$d=\frac{1}{4}\,bB, $$

for example, as in the parameter choices (17), then we have

$$\delta=0, $$

and then using (26) the solution to (24) is

$$\mathbf{U}^{(1)}=\mathbf{0}. $$

In this case, the formula (25) for the cubic coefficient C in the bifurcation equation simplifies to

$$C=\bigl\langle\mathbf{C}\bigl(\mathbf{U}^{(0)},\mathbf{U}^{(0)}, \mathbf{U}^{(0)}\bigr),\mathbf{U}^{(*)}\bigr\rangle, $$

and we have

$$ C=6\pi c \,\frac{(k_3-k_5)k_2^2k_5}{N^{(*)} (N^{(0)} )^3}\, \int _0^{\arcsin\gamma_c} \bigl[P^{m_c}_{\lambda_{m_c,n_c}(\gamma_c)}(\cos \theta) \bigr]^4\sin\theta\, d\theta. $$
(27)

Note that many expressions above such as u (0), v (0), N (0), k 5, M, u (∗), v (∗), and N (∗) depend on parameters, including m c and n c , but to simplify notation we have not explicitly shown the dependence. We used Maple to find numerical approximations of roots λ=λ m,n (γ), associated Legendre functions \(P^{m}_{\lambda}(\cos\theta)\), definite integrals, and (when δ≠0) coefficients for truncated, finite normal mode series expansions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagata, W., Zangeneh, H.R.Z. & Holloway, D.M. Reaction-Diffusion Patterns in Plant Tip Morphogenesis: Bifurcations on Spherical Caps. Bull Math Biol 75, 2346–2371 (2013). https://doi.org/10.1007/s11538-013-9895-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9895-5

Keywords

Navigation