Skip to main content
Log in

Evolutionary Distributions and Competition by Way of Reaction-Diffusion and by Way of Convolution

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Evolution by natural selection is the most ubiquitous and well understood process of evolution. We say distribution instead of the distribution of the density of populations of phenotypes across the values of their adaptive traits. A phenotype refers to an organism that exhibits a set of values of adaptive traits. An adaptive trait is a trait that a phenotype exhibits where the trait is subject to natural selection. Natural selection is a process by which populations of different phenotypes decline at different rates. An evolutionary distribution (ED) encapsulates the dynamics of evolution by natural selection. The main results are: (i) ED are derived by way of PDE of reaction-diffusion type and by way of integro-differential equations. The latter capture mutations through convolution of a kernel with the rate of growth of a population. The kernel controls the size and rate of mutations. (ii) The numerical solution of a logistic-like ED driven by competition corresponds to a bounded traveling wave solution of population models based on the logistic. (iii) Competition leads to increase in diversity of phenotypes on a single ED. Diversity refers to change in the number of local maxima (minima) within the bounds of values of adaptive traits. (iv) The principle of competitive exclusion in the context of evolution depends, smoothly, on the size and rate of mutations. (v) We identify the sensitivity—with respect to survival—of phenotypes to changes in values of adaptive traits to be an important parameter: increase in the value of this parameter results in decrease in evolutionary-based diversity. (vi) Stable ED corresponds to Evolutionary Stable Strategy; the latter refers to the outcome of a game of evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. As in fried eggs.

References

  • Barrick, J. E., Yu, D. S., Yoon, S. H., Jeong, H., Oh, T. K., Schneider, D., Lenski, R. E., & Kim, J. F. (2009). Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature, 461, 1243–1247.

    Article  Google Scholar 

  • Barton, N. H., & Keightley, P. D. (2002). Understanding quantitative genetic variation. Nat. Rev. Genet., 3, 11–21.

    Article  Google Scholar 

  • Bennett, A., & Lenski, R. E. (1996). Evolutionary adaptation to temperature. v. adaptive mechanisms and correlated responses in experimental lines of Escherichia coli. Evolution, 50, 493–503.

    Article  Google Scholar 

  • Bolnick, D. I., & Fitzpatrick, B. M. (2007). Sympatric speciation: models and empirical evidence. Annu. Rev. Ecol. Syst., 38, 459–487.

    Article  Google Scholar 

  • Bulmer, M. G. (1980). The mathematical theory of quantitative genetics. Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Bürger, R. (2005). A multilocus analysis of intraspecific competition and stabilizing selection on a quantitative trait. J. Math. Biol., 50, 355–396.

    Article  MathSciNet  MATH  Google Scholar 

  • Cantrell, R. S., & Cosner, C. (2004). Spatial ecology via reaction-diffusion equations. New York: Wiley.

    Book  MATH  Google Scholar 

  • Champagnat, N., Ferrière, R., & Méléard, S. (2006). Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models. Theor. Popul. Biol., 69, 297–321.

    Article  MATH  Google Scholar 

  • Cohen, Y. (2003). Distributed predator prey coevolution. Evol. Ecol. Res., 5, 819–834.

    Google Scholar 

  • Cohen, Y. (2009). Evolutionary distributions. Evolutionary Ecology Research, 11, 611–635.

    Google Scholar 

  • Cohen, Y. (2011a). Evolutionary distributions: producer consumer pattern formation. Biological Dynamics 5, 253–267.

    Article  MathSciNet  Google Scholar 

  • Cohen, Y. (2011b). Darwinian evolutionary distributions with time-delays. Dyn. Continuous, Descrete Impuls. Syst. Ser. B: Appl. Algorithms, 18, 29–48.

    MATH  MathSciNet  Google Scholar 

  • Crow, J. F., & Kimura, M. (1970). An introduction to population genetics. New York: Harper and Row.

    MATH  Google Scholar 

  • Crozat, E., Hindré, T., Kühn, L., Garin, J., Lenski, R. E., & Schneider, D. (2011). Altered regulation of the ompf porin by fis in Escherichia coli during an evolution experiments and between b and k-12 strains. Bacteriology, 193, 429–440.

    Article  Google Scholar 

  • Darwin, C. (1859). On the origins of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: Murray.

    Book  Google Scholar 

  • Darwin, C., & Wallace, A. (1858). On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. J. Proc. Linn. Soc. London. Zool., 3, 45–62.

    Article  Google Scholar 

  • Dieckmann, U. (1997). Can adaptive dynamics invade? Trends Ecol. Evol., 12, 128–131.

    Article  Google Scholar 

  • Dieckmann, U., & Doebeli, M. (1999). On the origin of species by sympatric speciation. Nature, 400, 354–357.

    Article  Google Scholar 

  • Fisher, R. A. (1937). The wave of advance of advantageous genes. Ann. Eugen., 7, 355–369.

    Article  MATH  Google Scholar 

  • Foster, K. R., & Bell, T. (2012). Competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol., 22, 1845–1850.

    Article  Google Scholar 

  • Foster, K. R., Shaulsky, G., Strassmann, J. E., Queller, D. C., & Thompson, C. R. L. (2004). Pleiotropy as a mechanism to stabilise cooperation. Nature, 431, 693–696.

    Article  Google Scholar 

  • Futuyma, D. J. (2005). Evolution (2nd ed.). Sunderland: Sinauer.

    Google Scholar 

  • Gissis, S., & Jablonka, E. (2011). Transformations of lamarckism: from subtle fluids to molecular biology. Cambridge: MIT Press.

    Book  Google Scholar 

  • Gourley, S. A., Chaplain, M. A. J., & Davidson, F. A. (2001). Spatio-temporal pattern formation in a nonlocal reaction-diffusion equation. Dyn. Syst., 16(2), 173–192.

    Article  MathSciNet  MATH  Google Scholar 

  • Haldane, J. B. S. (1932). The causes of evolution. New York: Longmans.

    Google Scholar 

  • Heino, M., Metz, J. A. J., & Kaitala, V. (1998). The enigma of frequency-dependent selection. Trends Ecol. Evol., 13, 367–370.

    Article  Google Scholar 

  • Jablonka, E., & Lamb, M. J. (1995). Epigenetic inheritance and evolution: the Lamarckian dimension. Oxford: Oxford University Press.

    Google Scholar 

  • Ji, L., & Li, Q. S. (2006). Turing pattern formation in coupled reaction-diffusion systems: effects of sub-environment and external influence. Chem. Phys. Lett., 424, 432–436.

    Article  Google Scholar 

  • Keshet, Y., & Segel, L. A. (1984). Pattern formation in aspect. In Xx, New York: Springer.

    Google Scholar 

  • Kimura, M. (1965). A stochastic model concerning the maintenance of genetic variability in quantitative characters. Proc. Natl. Acad. Sci. USA, 54, 731–736.

    Article  MATH  Google Scholar 

  • Kimura, M. (1983). The neutral theory or molecular evolution. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Kirkpatrick, M., & Rousset, F. (2005). Wright meets ad: not all landscapes are adaptive. J. Evol. Biol., 18, 1166–1169.

    Article  Google Scholar 

  • Lenormand, T. (2002). Gene flow and the limits to natural selection. Trends Ecol. Evol., 17, 184–189.

    Article  Google Scholar 

  • Lenski, R. E. (1988). Experimental studies of pleiotropy and epistasis in Escherichia coli. I. Variation in competitive titness among mutants resistant to virus t4. Evolution, 42, 425–432.

    Article  Google Scholar 

  • Levin, S. A., & Segel, L. A. (1985). Pattern generation in space and aspect. SIAM Review, 27, 45–67.

    Article  MathSciNet  MATH  Google Scholar 

  • Ludwig, D., & Levin, S. A. (1991). Evolutionary stability of plant communities and the maintenance of multiple dispersal types. Theor. Popul. Biol., 40, 285–307.

    Article  MATH  Google Scholar 

  • Maynard-Smith, J. (1982). Evolution and the theory of games. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Maynard-Smith, J., & Price, G. R. (1973). The logic of animal conflict. Nature, 246, 15–18.

    Article  Google Scholar 

  • Mayr, E. (1963). Animal species and evolution. New York: Belknap Press.

    Book  Google Scholar 

  • Metz, J. A., Nisbet, R. M., & Geritz, S. A. H. (1992). How should we define ‘fitness’ for general ecological scenarios? Trends Ecol. Evol., 7, 198–202.

    Article  Google Scholar 

  • Murray, J. (2003). Mathematical biology II: spatial models and biomedical applications. Berlin: Springer.

    MATH  Google Scholar 

  • Nagylaki, T. (1979). Dynamics of density- and frequency-dependent selection. Proc. Natl. Acad. Sci. USA, 76, 438–441.

    Article  MATH  Google Scholar 

  • Nunes, A., Luóis, A., & Meyer, M. (1999). Environmental changes, coextinction, and patterns in the fossil record. Phys. Rev. Lett., 82, 652–655.

    Article  Google Scholar 

  • Pimentel, D. (1968). Population regulation and genetic feedback. Science, 159, 1432–1437.

    Article  Google Scholar 

  • Renardy, M., & Rogers, R. C. (1993). An introduction to partial differential equations. New York: Springer.

    MATH  Google Scholar 

  • Saccheri, I., & Hanski, I. (2006). Natural selection and population dynamics. Trends Ecol. Evol., 21, 341–347.

    Article  Google Scholar 

  • Shapiro, J. (2011). Evolution: a view from the 21st century. New Jersey: FT Press Science.

    Google Scholar 

  • Slatkin, M. (1978). Spatial patterns in the distributions of polygenic characters. Theor. Popul. Biol., 70, 213–228.

    Article  Google Scholar 

  • Slatkin, M. (1979). The evolutionary response to frequency-and density-dependent selection. Am. Nat., 114, 384–398.

    Article  MathSciNet  Google Scholar 

  • Slatkin, M. (1981). A diffusion model of species selection. Paleobioloby, 7.

  • Smoller, J. (1982). Shock waves and reaction-diffusion equations. New York: Springer.

    MATH  Google Scholar 

  • Stenseth, N. C. (1986). Darwinian evolution in ecosystems: a survey of some ideas and difficulties together with some possible solutions. In Complexity, language, and life: mathematical approaches (pp. 105–129). Berlin: Springer.

    Chapter  Google Scholar 

  • Tokita, K. (2004). Species abundance patterns in complex evolutionary dynamics. Phys. Rev. Lett., 93, 178102.

    Article  Google Scholar 

  • Verhulst, P. F. (1844). Recherches mathematiques sur la loi d’Accroissement de la population. Mém. Acad. R. Brux., 43, 1–58.

    Google Scholar 

  • Via, S. (2001). Sympatric speciation in animals: the ugly duckling grows up. Trends Ecol. Evol., 16, 381–390.

    Article  Google Scholar 

  • Vincent, T. L., & Brown, J. S. (2005). Evolutionary game theory, natural selection, and Darwinian dynamics. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Wright, S. (1969). Evolution and the genetics of populations (Vol. 2). Chicago: University of Chicago Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yosef Cohen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, Y., Galiano, G. Evolutionary Distributions and Competition by Way of Reaction-Diffusion and by Way of Convolution. Bull Math Biol 75, 2305–2323 (2013). https://doi.org/10.1007/s11538-013-9890-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9890-x

Keywords

Navigation