Skip to main content

Advertisement

Log in

Trophic Structure, Stability, and Parasite Persistence Threshold in Food Webs

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Food web structure of free-living species is an important determinant of parasite species richness. Downwardly asymmetric predator–prey interactions (where there are more prey than predator species) have been shown, both theoretically and empirically, to harbour more trophically transmitted parasite species than expected due to chance. Here, we demonstrate that this could be due to the increase in the basic reproductive ratio that the addition of non-host prey species to a system creates. However, we note that the basic reproductive ratio is only increased by those prey that stabilise oscillations in a predator–prey system, and is decreased by those that do not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson, R. M., & May, R. M. (1979). Population biology of infectious disease: Part I. Nature, 280, 361–367.

    Article  Google Scholar 

  • Anderson, T. K., & Sukhdeo, M. V. (2011). Host centrality in food web networks determines parasite diversity. PLoS ONE, 6, 1–9.

    Google Scholar 

  • Bacaër, N. (2007). Approximation of the basic reproductive number r 0 for vector-borne diseases with a periodic vector population. Bull. Math. Biol., 69, 1067–1091.

    Article  MathSciNet  MATH  Google Scholar 

  • Bacaër, N. (2009). Periodic matrix population models: growth rate, basic reproductive number and entropy. Bull. Math. Biol., 71, 1781–1792.

    Article  MathSciNet  MATH  Google Scholar 

  • Bacaër, N., & Dads, E. H. A. (2012). On the biological interpretation of a definition for the parameter r 0 in periodic population models. J. Math. Biol., 65, 601–621.

    Article  MathSciNet  MATH  Google Scholar 

  • Bacaër, N., & Guernaoui, S. (2006). The epidemic threshold of vector-borne diseases with seasonality: the case of cutaneous leishmaniasis in Chichaoua, Morocco. J. Math. Biol., 53, 421–436.

    Article  MathSciNet  MATH  Google Scholar 

  • Bacaër, N., & Ouifki, R. (2007). Growth rate and basic reproduction number for population models with a simple periodic factor. Math. Biosci., 210, 647–658.

    Article  MathSciNet  MATH  Google Scholar 

  • Bate, A. M., & Hilker, F. M. (2013). Predator-prey oscillations can shift when diseases become endemic. J. Theor. Biol., 316, 1–8.

    Article  MathSciNet  Google Scholar 

  • Chattopadhyay, J., & Arino, O. (1999). A predator-prey model with disease in the prey. Nonlinear Anal., 36, 747–766.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, H.-W., Liu, W.-C., Davis, A. J., Jordán, F., Hwang, M.-J., & Shao, K.-T. (2008). Network position of hosts in food webs and their parasite diversity. Oikos, 117, 1847–1855.

    Article  Google Scholar 

  • Choisy, M., Brown, S. P., Lafferty, K. D., & Thomas, F. (2003). Evolution of trophic transmission in parasites: why add intermediate hosts? Am. Nat., 162(2), 172–181.

    Article  Google Scholar 

  • Comins, H., & Hassell, M. (1976). Predation in multi-prey communities. J. Theor. Biol., 62, 93–117.

    Article  Google Scholar 

  • Dambacher, J. M., Li, H. W., & Rossignol, P. A. (2002). Relevance of community structure in assessing indeterminancy of ecological predictions. Ecology, 83(5), 1372–1385.

    Article  Google Scholar 

  • Davis, S., Trapman, P., Leirs, H., Begon, M., & Heesterbeek, J. (2008). The abundance threshold for plague as a critical percolation phenomenon. Nature, 454, 634–637.

    Article  Google Scholar 

  • Diekmann, O., Heesterbeek, J., & Metz, J. (1990). On the definition and the computation of the basic reproductive ratio R 0 in models for infectious diseases in heterogeneous populations. J. Math. Biol., 28, 365–382.

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann, O., Heesterbeek, J., & Roberts, M. (2010). The construction of next-generation matrices for compartmental epidemic models. J. R. Soc. Interface, 7, 873–885.

    Article  Google Scholar 

  • Dobson, A. (1988). The population biology of parasite-induced changes in host behaviour. Q. Rev. Biol., 63(2), 139–165.

    Article  MathSciNet  Google Scholar 

  • Ferguson, S. H., Kingsley, M. C., & Higdon, J. W. (2012). Killer whale (Orcinus orca) predation in a multi-prey system. Popul. Ecol., 54, 31–41.

    Article  Google Scholar 

  • Gibson, G. A., Musgrave, D. L., & Hinckley, S. (2005). Non-linear dynamics of a pelagic ecosystem model with multiple predator and prey types. J. Plankton Res., 27(5), 427–447.

    Article  Google Scholar 

  • Greenman, J., & Pasour, V. (2012). Threshold dynamics for periodically forced ecological systems: the control of population invasion and exclusion. J. Theor. Biol., 295, 154–167.

    Article  MathSciNet  Google Scholar 

  • Hadeler, K., & Freedman, H. (1989). Predator-prey populations with parasitic infection. J. Math. Biol., 27, 609–631.

    Article  MathSciNet  MATH  Google Scholar 

  • Heesterbeek, J. (2002). A brief history of r 0 and a recipe for its calculation. Acta Biotheor., 50, 189–204.

    Article  Google Scholar 

  • Heesterbeek, J., & Roberts, M. (1995). Threshold quantities for helminth infections. J. Math. Biol., 33, 415–434.

    Article  MathSciNet  MATH  Google Scholar 

  • Holt, R., & Lawton, J. (1994). The ecological consequences of shared natural enemies. Annu. Rev. Ecol. Evol. Syst., 25, 495–520.

    Article  Google Scholar 

  • Hsieh, Y.-H., & Hsiao, C.-K. (2008). Predator-prey model with disease infection in both populations. Math. Med. Biol., 25, 247–266.

    Article  MATH  Google Scholar 

  • Inouye, R. S. (1980). Stabilization of a predator-prey equilibrium by the addition of a second “keystone” victim. Am. Nat., 115(2), 300–305.

    Article  MathSciNet  Google Scholar 

  • Lafferty, K. D. (1999). The evolution of trophic transmission. Parasitol. Today, 15(3), 111–115.

    Article  Google Scholar 

  • Lafferty, K. D., & Morris, A. K. (1996). Altered behaviour of parasitized killifish increases susceptibility to predation by bird final hosts. Ecology, 77, 1390–1397.

    Article  Google Scholar 

  • Marcogliese, D. (2002). Food webs and the transmission of parasites to marine fish. Parasitology, 124, S83–S99.

    Article  Google Scholar 

  • Matsuda, H., Hori, M., & Abrams, P. A. (1996). Effects of predator-specific defence on biodiversity and community complexity in two-trophic-level communities. Evol. Ecol., 10, 13–28.

    Article  Google Scholar 

  • Maynard Smith, J., & Slatkin, M. (1971). The stability of predator-prey systems. Ecology, 54(2), 384–391.

    Article  Google Scholar 

  • McLellan, B. N., Serrouya, R., Wittmer, H. U., & Boutin, S. (2010). Predator-mediated Allee effects in multi-prey systems. Ecology, 91(1), 286–292.

    Article  Google Scholar 

  • Ostfeld, R. S., & Keesing, F. (2012). Effects of host diversity on infectious disease. Annu. Rev. Ecol. Evol. Syst., 43, 157–182.

    Article  Google Scholar 

  • Paterson, R. A., Townsend, C. R., Tompkins, D. M., & Poulin, R. (2012). Ecological determinants of parastie acquisition by exotic fish species. Oikos, 121, 1889–1895.

    Article  Google Scholar 

  • Poulin, R., & Leung, T. (2011). Body size, trophic level, and the use of fish as transmission routes by parasites. Oecologia, 166, 731–738.

    Article  Google Scholar 

  • Randhawa, H. S., & Poulin, R. (2010). Determinants of tapeworm species richness in elasmobranch fishes: untangling environmental and phylogenetic influences. Ecography, 33, 866–877.

    Article  Google Scholar 

  • Rebelo, C., Margheri, A., & Bacaër, N. (2012). Persistence in seasonally forced epidemiological models. J. Math. Biol., 64, 933–949.

    Article  MathSciNet  MATH  Google Scholar 

  • Rossiter, W., & Sukhdeo, M. V. K. (2011). Exploitation of asymmetric predator-prey interactions by trophically transmitted parasites. Oikos, 120, 607–614.

    Article  Google Scholar 

  • Salkeld, D. J., Salathé, M., Stapp, P., & Holland Jones, J. (2010). Plague outbreaks in prairie dog populations explained by percolation thresholds of alternative host abundance. Proc. Natl. Acad. Sci. USA, 107(32), 14247–14250.

    Article  Google Scholar 

  • van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci., 180, 29–48.

    Article  MathSciNet  MATH  Google Scholar 

  • van Leeuwen, E., Jansen, V., & Bright, P. (2007). How population dynamics shape the functional response in a one-predator-two-prey system. Ecology, 88(6), 1571–1581.

    Article  Google Scholar 

  • Wang, W., & Zhao, X.-Q. (2008). Threshold dynamics for compartmental epidemic models in periodic environments. J. Dyn. Differ. Equ., 20, 699–717.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, T., Liu, J., & Teng, Z. (2008). Differential susceptability time-dependent SIR epidemic model. Int. J. Biomath., 1(1), 45–64.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their careful work and useful and perceptive comments, which have very much improved the paper. C.F. McQuaid is a Commonwealth Scholar, funded by the Department for International Development, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Finn McQuaid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McQuaid, C.F., Britton, N.F. Trophic Structure, Stability, and Parasite Persistence Threshold in Food Webs. Bull Math Biol 75, 2196–2207 (2013). https://doi.org/10.1007/s11538-013-9887-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9887-5

Keywords

Navigation