Skip to main content

Advertisement

Log in

Reconstruction of Certain Phylogenetic Networks from Their Tree-Average Distances

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Trees are commonly utilized to describe the evolutionary history of a collection of biological species, in which case the trees are called phylogenetic trees. Often these are reconstructed from data by making use of distances between extant species corresponding to the leaves of the tree. Because of increased recognition of the possibility of hybridization events, more attention is being given to the use of phylogenetic networks that are not necessarily trees. This paper describes the reconstruction of certain such networks from the tree-average distances between the leaves. For a certain class of phylogenetic networks, a polynomial-time method is presented to reconstruct the network from the tree-average distances. The method is proved to work if there is a single reticulation cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bandelt, H.-J., & Dress, A. (1992). Split decomposition: a new and useful approach to phylogenetic analysis of distance data. Mol. Phylogenet. Evol., 1, 242–252.

    Article  Google Scholar 

  • Baroni, M., Semple, C., & Steel, M. (2004). A framework for representing reticulate evolution. Ann. Comb., 8, 391–408.

    Article  MathSciNet  MATH  Google Scholar 

  • Baroni, M., Semple, C., & Steel, M. (2006). Hybrids in real time. Syst. Biol., 55, 46–56.

    Article  Google Scholar 

  • Boc, A., & Makarenkov, V. (2003). New efficient algorithm for detection of horizontal gene transfer events. In G. Benson, R. D. Page (Eds.), Lecture notes in computer science: Vol. 2812. Proceedings of the WABI03 (pp. 190–201).

    Google Scholar 

  • Bryant, D., & Moulton, V. (2004). Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Mol. Biol. Evol., 21, 255–265.

    Article  Google Scholar 

  • Cardona, G., Rosselló, F., & Valiente, G. (2009). Comparison of tree-child phylogenetic networks. IEEE/ACM Trans. Comput. Biol. Bioinform., 6(4), 552–569.

    Article  Google Scholar 

  • Choy, C., Jansson, J., Sadakane, K., & Sung, W.-K. (2005). Computing the maximum agreement of phylogenetic networks. Theor. Comput. Sci., 335(1), 93–107.

    Article  MathSciNet  MATH  Google Scholar 

  • Desper, R., & Gascuel, O. (2002). Fast and accurate phylogeny reconstruction algorithms based on the minimum-evolution principle. J. Comput. Biol., 9(5), 687–705.

    Article  MATH  Google Scholar 

  • Desper, R., & Gascuel, O. (2004). Theoretical foundation of the balanced minimum evolution method of phylogenetic inference and its relationship to weighted least-squares tree fitting. Mol. Biol. Evol., 21(3), 587–598.

    Article  Google Scholar 

  • Doolittle, W. F., et al. (2003). How big is the iceberg of which organella genes in nuclear genomes are but the tip? Philos. Trans. R. Soc. Lond. B, Biol. Sci., 358, 39–47.

    Article  Google Scholar 

  • Eslahchi, C., Habibi, M., Hassanzadeh, R., & Mottaghi, E. (2010). MC-net: a method for the construction of phylogenetic networks based on the Monte-Carlo method. BMC Evol. Biol., 10, 254. doi:10.1186/1471-2148-10-254.

    Article  Google Scholar 

  • Gascuel, O., & Steel, M. (2006). Neighbor-joining revealed. Mol. Biol. Evol., 23, 1997–2000.

    Article  Google Scholar 

  • Gusfield, D., Eddhu, S., & Langley, C. (2004). Optimal, efficient reconstruction of phylogenetic networks with constrained recombination. J. Bioinform. Comput. Biol., 2, 173–213.

    Article  MATH  Google Scholar 

  • Hasegawa, M., Kishino, H., & Yano, K. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol., 22, 160–174.

    Article  Google Scholar 

  • Huson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol., 23(2), 254–267.

    Article  Google Scholar 

  • Huson, D., Rupp, R., & Scornavacca, C. (2010). Phylogenetic networks: concepts, algorithms and applications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • van Iersel, L. J. J., Keijsper, J. C. M., Kelk, S. M., Stougie, L., Hagen, F., & Boekhout, T. (2009). Constructing level-2 phylogenetic networks from triplets. IEEE/ACM Trans. Comput. Biol. Bioinform., 6(43), 667–681.

    Article  Google Scholar 

  • Jukes, T. H., & Cantor, C. R. (1969). Evolution of protein molecules. In S. Osawa & T. Honjo (Eds.), Evolution of life: fossils, molecules (pp. 79–95). Tokyo: Springer.

    Google Scholar 

  • Kimura, M. (1980). A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol., 16, 111–120.

    Article  Google Scholar 

  • Lake, J. A. (1994). Reconstructing evolutionary trees from DNA and protein sequences: paralinear distances. Proc. Natl. Acad. Sci. USA, 91, 1455–1459.

    Article  Google Scholar 

  • Marcussen, T., Jakobsen, K., Danihelka, J., Ballard, H., Blaxland, K., Brysting, A., & Oxelman, B. (2012). Inferring species networks from gene trees in high-polyploid North American and Hawaiian violets (Viola, Violacae). Syst. Biol., 61, 107–126.

    Article  Google Scholar 

  • Moret, B. M. E., Nakhleh, L., Warnow, T., Linder, C. R., Tholse, A., Padolina, A., Sun, J., & Timme, R. (2004). Phylogenetic networks: modeling, reconstructibility, and accuracy. IEEE/ACM Trans. Comput. Biol. Bioinform., 1, 13–23.

    Article  Google Scholar 

  • Nakhleh, L., Warnow, T., & Linder, C. R. (2004). Reconstructing reticulate evolution in species–theory and practice. In P. E. Bourne & D. Gusfield (Eds.), Proceedings of the eighth annual international conference on computational molecular biology (pp. 337–346). RECOMB ’04, San Diego, California, March 27–31, 2004. New York: ACM.

    Google Scholar 

  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4, 406–425.

    Google Scholar 

  • Semple, C., & Steel, M. (2003). Phylogenetics. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Steel, M. A. (1994). Recovering a tree from the leaf colorations it generates under a Markov model. Appl. Math. Lett., 7(2), 19–23.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, L., Zhang, K., & Zhang, L. (2001). Perfect phylogenetic networks with recombination. J. Comput. Biol., 8, 69–78.

    Article  Google Scholar 

  • Wang, L., Ma, B., & Li, M. (2000). Fixed topology alignment with recombination. Discrete Appl. Math., 104(1–3), 281–300.

    Article  MathSciNet  MATH  Google Scholar 

  • Willson, S. J. (2010). Properties of normal phylogenetic networks. Bull. Math. Biol., 72, 340–358.

    Article  MathSciNet  MATH  Google Scholar 

  • Willson, S. J. (2012). Tree-average distances on certain phylogenetic networks have their weights uniquely determined. Algorithms Mol. Biol., 7, 13. doi:10.1186/1748-7188-7-13.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Willson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willson, S.J. Reconstruction of Certain Phylogenetic Networks from Their Tree-Average Distances. Bull Math Biol 75, 1840–1878 (2013). https://doi.org/10.1007/s11538-013-9872-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9872-z

Keywords

Navigation