Skip to main content

Advertisement

Log in

Properties of Normal Phylogenetic Networks

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A phylogenetic network is a rooted acyclic digraph with vertices corresponding to taxa. Let X denote a set of vertices containing the root, the leaves, and all vertices of outdegree 1. Regard X as the set of vertices on which measurements such as DNA can be made. A vertex is called normal if it has one parent, and hybrid if it has more than one parent. The network is called normal if it has no redundant arcs and also from every vertex there is a directed path to a member of X such that all vertices after the first are normal. This paper studies properties of normal networks.

Under a simple model of inheritance that allows homoplasies only at hybrid vertices, there is essentially unique determination of the genomes at all vertices by the genomes at members of X if and only if the network is normal. This model is a limiting case of more standard models of inheritance when the substitution rate is sufficiently low.

Various mathematical properties of normal networks are described. These properties include that the number of vertices grows at most quadratically with the number of leaves and that the number of hybrid vertices grows at most linearly with the number of leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bandelt, H.-J., Dress, A., 1992. Split decomposition: a new and useful approach to phylogenetic analysis of distance data. Mol. Phylogenet. Evol. 1, 242–252.

    Article  Google Scholar 

  • Baroni, M., Steel, M., 2006. Accumulation phylogenies. Ann. Comb. 10, 19–30.

    Article  MATH  MathSciNet  Google Scholar 

  • Baroni, M., Semple, C., Steel, M., 2004. A framework for representing reticulate evolution. Ann. Comb. 8, 391–408.

    Article  MATH  MathSciNet  Google Scholar 

  • Baroni, M., Semple, C., Steel, M., 2006. Hybrids in real time. Syst. Biol. 55, 46–56.

    Article  Google Scholar 

  • Bordewich, M., Semple, C., 2007. Computing the minimum number of hybridization events for a consistent evolutionary history. Discrete Appl. Math. 155, 914–928.

    Article  MATH  MathSciNet  Google Scholar 

  • Cardona, G., Rosselló, F., Valiente, G., 2007. Comparison of tree-child phylogenetic networks. To appear in IEEE/ACM Trans. Comput. Biol. Bioinform. doi:10.1109/TCBB.2007.70270

  • Cardona, G., Llabrés, M., Rosselló, F., Valiente, G., 2008a. A distance metric for a class of tree-sibling phylogenetic networks. Bioinformatics 24, 1481–1488.

    Article  Google Scholar 

  • Cardona, G., Rosselló, F., Valiente, G., 2008b. Tripartitions do not always discriminate phylogenetic networks. Math. Biosci. 211, 356–370.

    Article  MATH  MathSciNet  Google Scholar 

  • Cardona, G., Llabrés, M., Rosselló, F., Valiente, G., 2009a. Metrics for phylogenetic networks I: Generalizations of the Robinson–Foulds metric. IEEE/ACM Trans. Comput. Biol. Bioinform. 6, 46–61.

    Article  Google Scholar 

  • Cardona, G., Llabrés, M., Rosselló, F., Valiente, G., 2009b. Metrics for phylogenetic networks II: Nodal and triplets metrics. IEEE/ACM Trans. Comput. Biol. Bioinform. 6, 454–469.

    Article  Google Scholar 

  • Gusfield, D., Eddhu, S., Langley, C., 2004. Optimal, efficient reconstruction of phylogenetic networks with constrained recombination. J. Bioinform. Comput. Biol. 2, 173–213.

    Article  Google Scholar 

  • Hein, J., 1990. Reconstructing evolution of sequences subject to recombination using parsimony. Math. Biosci. 98, 185–200.

    Article  MATH  MathSciNet  Google Scholar 

  • Jin, G., Nakhleh, L., Snir, S., Tuller, T., 2006. Maximum likelihood of phylogenetic networks. Bioinformatics 22, 2604–2611.

    Article  Google Scholar 

  • Jin, G., Nakhleh, L., Snir, S., Tuller, T., 2007. Efficient parsimony-based methods for phylogenetic network reconstruction. Bioinformatics 23, e123–e128.

    Article  Google Scholar 

  • Kimura, M., 1980. A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.

    Article  Google Scholar 

  • Moret, B.M.E., Nakhleh, L., Warnow, T., Linder, C.R., Tholse, A., Padolina, A., Sun, J., Timme, R., 2004. Phylogenetic networks: modeling, reconstructibility, and accuracy. IEEE/ACM Trans. Comput. Biol. Bioinform. 1, 13–23.

    Article  Google Scholar 

  • Nakhleh, L., Warnow, T., Linder, C.R., 2004. Reconstructing reticulate evolution in species-theory and practice. In: Bourne, P.E., Gusfield, D. (Eds.), Proceedings of the Eighth Annual International Conference on Computational Molecular Biology, RECOMB ’04, March 27–31, 2004, San Diego, California, pp. 337–346. ACM, New York.

    Google Scholar 

  • Semple, C., Steel, M., 2003. Phylogenetics. Oxford University Press, Oxford.

    MATH  Google Scholar 

  • van Iersel, L., Keijsper, J., Kelk, S., Stougie, L., 2007. Constructing level-2 phylogenetic networks from triplets. arXiv:0707.2890v1 [q-bio.PE].

  • Wang, L., Zhang, K., Zhang, L., 2001. Perfect phylogenetic networks with recombination. J. Comput. Biol. 8, 69–78.

    Article  Google Scholar 

  • Willson, S.J., 2007a. Unique determination of some homoplasies at hybridization events. Bull. Math. Biol. 69, 1709–1725.

    Article  MATH  MathSciNet  Google Scholar 

  • Willson, S.J., 2007b. Reconstruction of some hybrid pylogenetic networks with homoplasies from distances. Bull. Math. Biol. 62, 2561–2590.

    Article  MathSciNet  Google Scholar 

  • Willson, S.J., 2008. Reconstruction of certain phylogenetic networks from the genomes at their leaves. J. Theor. Biol. 252, 338–349.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Willson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willson, S.J. Properties of Normal Phylogenetic Networks. Bull. Math. Biol. 72, 340–358 (2010). https://doi.org/10.1007/s11538-009-9449-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9449-z

Keywords

Navigation