Skip to main content
Log in

Linking Molecular and Population Processes in Mathematical Models of Quorum Sensing

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Many bacteria alter their behaviors as a function of population density, via a process known as quorum sensing (QS). QS is achieved by the synthesis and detection of diffusible signal molecules, often involving complex signal transduction pathways and regulatory networks. Mathematical models have been developed to investigate a number of aspects of QS, resulting in a wide range of model structures; many have focused on either the molecular or the population scale. In this paper, I show that many published models fail to satisfy physical constraints (such as conservation of matter) or rely on a priori assumptions that may not be valid. I present new, simple models of canonical Gram-negative and Gram-positive QS systems, in both well-mixed and biofilm populations, focusing on the interaction between molecular and population processes. I show that this interaction may be crucial for several important features of QS, including bistability and the localization of QS in space. The results highlight the need to link molecular and population processes carefully in QS models, provide a general framework for understanding the behavior of complex system-specific models, and suggest new directions for both theoretical and experimental work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anetzberger, C., Pirch, T., & Jung, K. (2009). Heterogeneity in quorum sensing-regulated bioluminescence of Vibrio harveyi. Mol. Microbiol., 73(2), 267–277.

    Article  Google Scholar 

  • Anguige, K., King, J. R., Ward, J. P., & Williams, P. (2004). Mathematical modelling of therapies targeted at bacterial quorum sensing. Math. Biosci., 192(1), 39–83.

    Article  MathSciNet  MATH  Google Scholar 

  • Anguige, K., King, J. R., & Ward, J. P. (2005). Modelling antibiotic- and anti-quorum sensing treatment of a spatially-structured Pseudomonas aeruginosa population. J. Math. Biol., 51(5), 557–594.

    Article  MathSciNet  MATH  Google Scholar 

  • Anguige, K., King, J. R., & Ward, J. P. (2006). A multi-phase mathematical model of quorum sensing in a maturing Pseudomonas aeruginosa biofilm. Math. Biosci., 203(2), 240–276.

    Article  MathSciNet  MATH  Google Scholar 

  • Balagadde, F. K., Song, H., Ozaki, J., Collins, C. H., Barnet, M., Arnold, F. H., Quake, S. R., & You, L. (2008). A synthetic Escherichia coli predator-prey ecosystem. Mol. Syst. Biol., 4, 187.

    Article  Google Scholar 

  • Banik, S. K., Fenley, A. T., & Kulkarni, R. V. (2009). A model for signal transduction during quorum sensing in Vibrio harveyi. Phys. Biol., 6(4), 046008.

    Article  Google Scholar 

  • Bassler, B. L. (1999). How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr. Opin. Microbiol., 2(6), 582–587.

    Article  Google Scholar 

  • Bedford, A., & Drumheller, D. S. (1983). Theory of immiscible and structured mixtures. Int. J. Eng. Sci., 21, 863–960.

    Article  MathSciNet  MATH  Google Scholar 

  • Bejerano-Sagie, M., & Xavier, K. B. (2007). The role of small RNAs in quorum sensing. Curr. Opin. Microbiol., 10(2), 189–198.

    Article  Google Scholar 

  • Brown, D. (2010). A mathematical model of the Gac/Rsm quorum sensing network in Pseudomonas fluorescens. Biosystems, 101(3), 200–212.

    Article  Google Scholar 

  • Capaldi, F. M. (2012). Continuum mechanics: constitutive modeling of structural and biological materials.

    Book  MATH  Google Scholar 

  • Chopp, D. L., Kirisits, M. J., Moran, B., & Parsek, M. R. (2002). A mathematical model of quorum sensing in a growing bacterial biofilm. J. Ind. Microbiol. Biotech., 29(6), 339–346.

    Article  Google Scholar 

  • Chopp, D. L., Kirisits, M. J., Moran, B., & Parsek, M. R. (2003). The dependence of quorum sensing on the depth of a growing biofilm. Bull. Math. Biol., 65(6), 1053–1079.

    Article  Google Scholar 

  • Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., & Lappin-Scott, H. M. (1995). Microbial biofilms. Annu. Rev. Microbiol., 49, 711–745.

    Article  Google Scholar 

  • Cox, C. D., Peterson, G. D., Allen, M. S., Lancaster, J. M., McCollum, J. M., Austin, D., Yan, L., Sayler, G. S., & Simpson, M. L. (2003). Analysis of noise in quorum sensing. Omics. J. Integr. Biol., 7(3), 317–334.

    Article  Google Scholar 

  • Darch, S. E., West, S. A., Winzer, K., & Diggle, S. P. (2012). Density-dependent fitness benefits in quorum-sensing bacterial populations. Proc. Natl. Acad. Sci. USA, 109(21), 8259–8263.

    Article  Google Scholar 

  • Dockery, J. D., & Keener, J. P. (2001). A mathematical model for quorum sensing in Pseudomonas aeruginosa. Bull. Math. Biol., 63(1), 95–116.

    Article  MATH  Google Scholar 

  • Fagerlind, M. G., Rice, S. A., Nilsson, P., Harlen, M., James, S., Charlton, T., & Kjelleberg, S. (2003). The role of regulators in the expression of quorum-sensing signals in Pseudomonas aeruginosa. J. Mol. Microbiol. Biotechnol., 6(2), 88–100.

    Article  Google Scholar 

  • Fagerlind, M. G., Nilsson, P., Harlen, M., Karlsson, S., Rice, S. A., & Kjelleberg, S. (2005). Modeling the effect of acylated homoserine lactone antagonists in Pseudomonas aeruginosa. Biosystems, 80(2), 201–213.

    Article  Google Scholar 

  • Fenley, A. T., Banik, S. K., & Kulkarni, R. V. (2011). Computational modeling of differences in the quorum sensing induced luminescence phenotypes of Vibrio harveyi and Vibrio cholerae. J. Theor. Biol., 274(1), 145–153.

    Article  Google Scholar 

  • Fuqua, C., Parsek, M. R., & Greenberg, E. P. (2001). Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu. Rev. Genet., 35, 439–468.

    Article  Google Scholar 

  • Garcia-Ojalvo, J., Elowitz, M. B., & Strogatz, S. H. (2004). Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing. Proc. Natl. Acad. Sci. USA, 101(30), 10955–10960.

    Article  MathSciNet  MATH  Google Scholar 

  • Gonzalez Barrios, A. F., Covo, V., Medina, L. M., Vives-Florez, M., & Achenie, L. (2009). Quorum quenching analysis in Pseudomonas aeruginos and Escherichia coli: network topology and inhibition mechanism effect on the optimized inhibitor dose. Bioprocess. Biosyst. Eng., 32, 545–556.

    Article  Google Scholar 

  • Goryachev, A. B. (2011). Understanding bacterial cell-cell communication with computational modeling. Chem. Rev., 111(1), 238–250.

    Article  Google Scholar 

  • Goryachev, A. B., Toh, D. J., Wee, K. B., Lee, T., Zhang, H. B., & Zhang, L. H. (2005). Transition to quorum sensing in an agrobacterium population: a stochastic model. PLoS Comput. Biol., 1(4), e37.

    Article  Google Scholar 

  • Goryachev, A. B., Toh, D. J., & Lee, T. (2006). Systems analysis of a quorum sensing network: design constraints imposed by the functional requirements, network topology and kinetic constants. Biosystems, 83(2–3), 178–187.

    Article  Google Scholar 

  • Gustafsson, E., Nilsson, P., Karlsson, S., & Arvidson, S. (2004). Characterizing the dynamics of the quorum-sensing system in Staphylococcus aureus. J. Mol. Microbiol. Biotechnol., 8(4), 232–242.

    Article  Google Scholar 

  • Hasty, J., Pradines, J., Dolnik, M., & Collins, J. J. (2000). Noise-based switches and amplifiers for gene expression. Proc. Natl. Acad. Sci. USA, 97(5), 2075–2080.

    Article  MATH  Google Scholar 

  • Heeb, S., & Haas, D. (2001). Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. Mol. Plant-Microbe Interact., 14(12), 1351–1363.

    Article  Google Scholar 

  • Hense, B. A., Kuttler, C., Muller, J., Rothballer, M., Hartmann, A., & Kreft, J. U. (2007). Does efficiency sensing unify diffusion and quorum sensing? Nat. Rev. Microbiol., 5(3), 230–239.

    Article  Google Scholar 

  • Hong, D., Saidel, W. M., Man, S., & Martin, J. V. (2007). Extracellular noise-induced stochastic synchronization in heterogeneous quorum sensing network. J. Theor. Biol., 245(4), 726–736.

    Article  MathSciNet  Google Scholar 

  • Jabbari, S., King, J. R., Koerber, A. J., & Williams, P. (2010a). Mathematical modelling of the agr operon in Staphylococcus aureus. J. Math. Biol., 61(1), 17–54.

    Article  MathSciNet  MATH  Google Scholar 

  • Jabbari, S., King, J. R., & Williams, P. (2010b). A mathematical investigation of the effects of inhibitor therapy on three putative phosphorylation cascades governing the two-component system of the agr operon. Math. Biosci., 225(2), 115–131.

    Article  MathSciNet  MATH  Google Scholar 

  • Jabbari, S., Heap, J. T., & King, J. R. (2011). Mathematical modelling of the sporulation-initiation network in Bacillus subtilis revealing the dual role of the putative quorum-sensing signal molecule PhrA. Bull. Math. Biol., 73(1), 181–211.

    Article  MathSciNet  MATH  Google Scholar 

  • Jabbari, S., King, J. R., & Williams, P. (2012a). Cross-strain quorum sensing inhibition by Staphylococcus aureus. Part 1: a spatially homogeneous model. Bull. Math. Biol., 74(6), 1292–1325.

    Article  MathSciNet  MATH  Google Scholar 

  • Jabbari, S., King, J. R., & Williams, P. (2012b). Cross-strain quorum sensing inhibition by Staphylococcus aureus. Part 2: a spatially inhomogeneous model. Bull. Math. Biol., 74(6), 1326–1353.

    Article  MathSciNet  MATH  Google Scholar 

  • James, S., Nilsson, P., James, G., Kjelleberg, S., & Fagerstrom, T. (2000). Luminescence control in the marine bacterium Vibrio fischeri: an analysis of the dynamics of lux regulation. J. Mol. Biol., 296(4), 1127–1137.

    Article  Google Scholar 

  • Karlsson, D., Karlsson, S., Gustafsson, E., Normark, B. H., & Nilsson, P. (2007). Modeling the regulation of the competence-evoking quorum sensing network in Streptococcus pneumoniae. Biosystems, 90(1), 211–223.

    Article  Google Scholar 

  • Kim, J. R., & Cho, K. H. (2006). The multi-step phosphorelay mechanism of unorthodox two-component systems in E. coli realizes ultrasensitivity to stimuli while maintaining robustness to noises. Comput. Biol. Chem., 30(6), 438–444.

    Article  MATH  Google Scholar 

  • Koerber, A. J., King, J. R., Ward, J. P., Williams, P., Croft, J. M., & Sockett, R. E. (2002). A mathematical model of partial-thickness burn-wound infection by Pseudomonas aeruginosa: quorum sensing and the build-up to invasion. Bull. Math. Biol., 64(2), 239–259.

    Article  Google Scholar 

  • Koerber, A. J., King, J. R., & Williams, P. (2005). Deterministic and stochastic modelling of endosome escape by Staphylococcus aureus: “quorum” sensing by a single bacterium. J. Math. Biol., 50(4), 440–488.

    Article  MathSciNet  MATH  Google Scholar 

  • Kuttler, C., & Hense, B. A. (2008). Interplay of two quorum sensing regulation systems of Vibrio fischeri. J. Theor. Biol., 251(1), 167–180.

    Article  MathSciNet  Google Scholar 

  • Lapouge, K., Schubert, M., Allain, F. H., & Haas, D. (2008). Gac/Rsm signal transduction pathway of gamma-proteobacteria: from RNA recognition to regulation of social behaviour. Mol. Microbiol., 67(2), 241–253.

    Article  Google Scholar 

  • Lenz, A. P., Williamson, K. S., Pitts, B., Stewart, P. S., & Franklin, M. J. (2008). Localized gene expression in Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol., 74(14), 4463–4471.

    Article  Google Scholar 

  • Levsky, J. M., & Singer, R. H. (2003). Gene expression and the myth of the average cell. Trends Cell Biol., 13(1), 4–6.

    Article  Google Scholar 

  • Mehra, S., Charaniya, S., Takano, E., & Hu, W. S. (2008). A bistable gene switch for antibiotic biosynthesis: the butyrolactone regulon in Streptomyces coelicolor. PLoS ONE, 3(7), e2724.

    Article  Google Scholar 

  • Mehta, P., Goyal, S., Long, T., Bassler, B. L., & Wingreen, N. S. (2009). Information processing and signal integration in bacterial quorum sensing. Mol. Syst. Biol., 5, 325.

    Article  Google Scholar 

  • Melke, P., Sahlin, P., Levchenko, A., & Jonsson, H. (2010). A cell-based model for quorum sensing in heterogeneous bacterial colonies. PLoS Comput. Biol., 6(6), e1000819.

    Article  MathSciNet  Google Scholar 

  • Muller, J., Kuttler, C., Hense, B. A., Rothballer, M., & Hartmann, A. (2006). Cell-cell communication by quorum sensing and dimension-reduction. J. Math. Biol., 53(4), 672–702.

    Article  MathSciNet  MATH  Google Scholar 

  • Muller, J., Kuttler, C., & Hense, B. A. (2008). Sensitivity of the quorum sensing system is achieved by low pass filtering. Biosystems, 92(1), 76–81.

    Article  MathSciNet  Google Scholar 

  • Ng, W. L., & Bassler, B. L. (2009). Bacterial quorum-sensing network architectures. Annu. Rev. Genet., 43, 197–222.

    Article  Google Scholar 

  • Nilsson, P., Olofsson, A., Fagerlind, M., Fagerstrom, T., Rice, S., Kjelleberg, S., & Steinberg, P. (2001). Kinetics of the AHL regulatory system in a model biofilm system: how many bacteria constitute a “quorum”? J. Mol. Biol., 309(3), 631–640.

    Article  Google Scholar 

  • Pai, A., & You, L. (2009). Optimal tuning of bacterial sensing potential. Mol. Syst. Biol., 5, 286.

    Article  Google Scholar 

  • Pearson, J. P., Van Delden, C., & Iglewski, B. H. (1999). Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J. Bacteriol., 181(4), 1203–1210.

    Google Scholar 

  • Redfield, R. J. (2002). Is quorum sensing a side effect of diffusion sensing? Trends Microbiol., 10(8), 365–370.

    Article  Google Scholar 

  • Tanouchi, Y., Tu, D., Kim, J., & You, L. (2008). Noise reduction by diffusional dissipation in a minimal quorum sensing motif. PLoS Comput. Biol., 4(8), e1000167.

    Article  Google Scholar 

  • Viretta, A. U., & Fussenegger, M. (2004). Modeling the quorum sensing regulatory network of human-pathogenic Pseudomonas aeruginosa. Biotechnol. Prog., 20(3), 670–678.

    Article  Google Scholar 

  • Ward, J. P., King, J. R., Koerber, A. J., Williams, P., Croft, J. M., & Sockett, R. E. (2001). Mathematical modelling of quorum sensing in bacteria. IMA J. Math. Appl. Med. Biol., 18(3), 263–292.

    Article  MATH  Google Scholar 

  • Ward, J. P., King, J. R., Koerber, A. J., Croft, J. M., Sockett, R. E., & Williams, P. (2003). Early development and quorum sensing in bacterial biofilms. J. Math. Biol., 47(1), 23–55.

    Article  MathSciNet  MATH  Google Scholar 

  • Ward, J. P., King, J. R., Koerber, A. J., Croft, J. M., Sockett, R. E., & Williams, P. (2004). Cell-signalling repression in bacterial quorum sensing. Math. Med. Biol., 21(3), 169–204.

    Article  MATH  Google Scholar 

  • Williams, J. W., Cui, X., Levchenko, A., & Stevens, A. M. (2008). Robust and sensitive control of a quorum-sensing circuit by two interlocked feedback loops. Mol. Syst. Biol., 4, 234.

    Article  Google Scholar 

  • Yarwood, J. M., Bartels, D. J., Volper, E. M., & Greenberg, E. P. (2004). Quorum sensing in Staphylococcus aureus biofilms. J. Bacteriol., 186(6), 1838–1850.

    Article  Google Scholar 

  • Xu, K. D., Stewart, P. S., Xia, F., Huang, C. T., & McFeters, G. A. (1998). Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl. Environ. Microbiol., 64(10), 4035–4039.

    Google Scholar 

Download references

Acknowledgements

I thank Phoebe Lostroh for many interesting conversations about bacterial genetics and quorum sensing. I thank Sara Jabbari for discussing her modeling work with me.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, D. Linking Molecular and Population Processes in Mathematical Models of Quorum Sensing. Bull Math Biol 75, 1813–1839 (2013). https://doi.org/10.1007/s11538-013-9870-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9870-1

Keywords

Navigation