Skip to main content

Advertisement

Log in

A State Dependent Pulse Control Strategy for a SIRS Epidemic System

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

With the consideration of mechanism of prevention and control for the spread of infectious diseases, we propose, in this paper, a state dependent pulse vaccination and medication control strategy for a SIRS type epidemic dynamic system. The sufficient conditions on the existence and orbital stability of positive order-1 or order-2 periodic solution are presented. Numerical simulations are carried out to illustrate the main results and compare numerically the state dependent vaccination strategy and the fixed time pulse vaccination strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agur, Z., Cojocaru, L., Anderson, R., & Danon, Y. (1983). Pulse mass measles vaccination across age cohorts. Proc. Natl. Acad. Sci. USA, 90, 11698–11702.

    Article  Google Scholar 

  • Anderson, R. M., & May, R. M. (1979). Population biology of infectious diseases: part I. Nature, 280, 361–367.

    Article  Google Scholar 

  • Anderson, R. M., & May, R. M. (1991). Infectious diseases of humans: dynamics and control. Oxford: Oxford University Press.

    Google Scholar 

  • Capasso, V. (1993). Lecture notes in biomathematics: Vol. 97. Mathematical structures of epidemic systems. New York: Springer.

    MATH  Google Scholar 

  • Diekmann, O., & Heesterbeek, J. A. P. (2000). Mathematical epidemiology of infectious diseases: model building, analysis and interpretation. New York: Wiley.

    MATH  Google Scholar 

  • D’Onofrio, A. (2002). Stability properties of pulse vaccination strategy in SEIR epidemic model. Math. Biosci., 179, 57–72.

    Article  MathSciNet  MATH  Google Scholar 

  • Gao, S. J., Chen, L. S., Nieoto, J. J., & Torres, A. (2006). Analysis of a delayed epidemic model with pulse vaccination and saturation incidence. Vaccine, 24, 6037–6045.

    Article  Google Scholar 

  • Gao, S. J., Chen, L. S., & Teng, Z. D. (2007). Impulsive vaccination of an SEIRS model with time delay and varying total population size. Bull. Math. Biol., 69, 731–745.

    Article  MATH  Google Scholar 

  • Gao, S. J., Liu, Y. J., Nieto, J. J., & Andrade, H. (2011). Seasonality and mixed vaccination strategy in an epidemic model with vertical transmission. Math. Comput. Simul., 81, 1855–1868.

    Article  MathSciNet  MATH  Google Scholar 

  • Hale, J., & Kocak, H. (1991). Dynamics and bifurcations. New York: Springer.

    Book  MATH  Google Scholar 

  • Hethcote, H. W. (1989). Three basic epidemiological models. In Applied mathematical ecology, Berlin: Springer.

    Google Scholar 

  • Jiang, G. R., & Lu, Q. S. (2006). The dynamics of a prey–predator model with impulsive state feedback control. Discrete Contin. Dyn. Syst., Ser. B, 6, 1310–1320.

    MathSciNet  Google Scholar 

  • Jiang, G. R., & Lu, Q. S. (2007). Impulsive state feedback control of a predator–prey model. J. Comput. Appl. Math., 200, 193–207.

    Article  MathSciNet  MATH  Google Scholar 

  • Kermack, W. O., & Mckendrick, A. G. (1927). Contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A, 115, 700–721.

    Article  MATH  Google Scholar 

  • Lakshmikantham, V., Bainov, D. D., & Simeonov, P. S. (1989). Theory of impulsive differential equations. Singapore: World Scientific.

    Book  MATH  Google Scholar 

  • Liu, S. Y., Pei, Y. Z., Li, C. G., & Chen, L. S. (2009). Three kinds of TVS in a SIR epidemic model with saturated infectious force and vertical transmission. Appl. Math. Model., 33, 1923–1932.

    Article  MathSciNet  MATH  Google Scholar 

  • Ma, Z. E., Zhou, Y. C., Wang, W. D., & Jin, Z. (2004). Mathematical modelling and research of epidemic dynamical systems. Beijing: Science Press (in Chinese).

    Google Scholar 

  • Nie, L. F., Teng, Z. D., Hu, L., & Peng, J. G. (2009). The dynamics of a Lotka–Volterra predator–prey model with state dependent impulsive harvest for predator. Biosystems, 98, 67–72.

    Article  Google Scholar 

  • Nie, L. F., Teng, Z. D., Hu, L., & Peng, J. G. (2010). Qualitative analysis of a modified Leslie–Gower and Holling-type II predator–prey model with state dependent impulsive effects. Nonlinear Anal., Real World Appl., 11, 1364–1373.

    Article  MathSciNet  MATH  Google Scholar 

  • Pei, Y. Z., Liu, S. Y., Li, C. G., & Chen, L. S. (2009). The dynamics of an impulsive delay SI model with variable coefficients. Appl. Math. Model., 33, 2766–2776.

    Article  MathSciNet  MATH  Google Scholar 

  • Ramsay, M., Gay, N., & Miller, E. (1994). The epidemiology of measles in England and Wales: rationale for 1994 national vaccination campaign. Commun. Dis. Rep., 4, 141–146.

    Google Scholar 

  • Ross, R. (1911). The prevention of malaria (2nd ed.). London: Murray.

    Google Scholar 

  • Ruan, S. G., & Wang, W. D. (2003). Dynamical behavior of an epidemic model with nonlinear incidence rate. J. Differ. Equ., 188, 135–163.

    Article  MathSciNet  MATH  Google Scholar 

  • Sabin, A. B. (1991). Measles: killer of millions in developing countries: strategies of elimination and continuing control. Eur. J. Epidemiol., 7, 1–22.

    Google Scholar 

  • Shulgin, B., Stone, L., & Agur, Z. (1998). Pulse vaccination strategy in the SIR epidemic model. Bull. Math. Biol., 60, 1–26.

    Article  MATH  Google Scholar 

  • Simeonov, P. S., & Bainov, D. D. (1988). Orbital stability of periodic solutions of autonomous systems with impulse effect. Int. J. Syst. Sci., 19, 2561–2585.

    Article  MathSciNet  MATH  Google Scholar 

  • Tang, S. Y., Xiao, Y. N., Chen, L. S., & Cheke, R. A. (2005). Integrated pest management models and their dynamical behaviour. Bull. Math. Biol., 67, 115–135.

    Article  MathSciNet  Google Scholar 

  • Terry, A. J. (2010). Pulse vaccination strategies in a metapopulation SIR model. Math. Biosci. Eng., 7, 455–477.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, L. M., Chen, L. S., & Nieto, J. J. (2010). The dynamics of an epidemic model for pest control with impulsive effect. Nonlinear Anal., Real World Appl., 11, 1374–1386.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank antonymous referees for their constructive suggestions and comments that improve substantially the original manuscript.

This work was supported in part by the Natural Science Foundation of Xinjiang (Grant No. 2011211B08), the National Natural Science Foundation of China (Grant No. 11001235, 11271312, and 11261056), the China Postdoctoral Science Foundation (Grant No. 20110491750 and 2012T50836), the Scientific Research Programmes of Colleges in Xinjiang (Grant No. XJEDU2011S08), the National Basic Research Program of China (2011CB808002), and the National Research Foundation of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin-Fei Nie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, LF., Teng, ZD. & Guo, BZ. A State Dependent Pulse Control Strategy for a SIRS Epidemic System. Bull Math Biol 75, 1697–1715 (2013). https://doi.org/10.1007/s11538-013-9865-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9865-y

Keywords

Navigation