Skip to main content
Log in

Tendon Mechanobiology: Experimental Models Require Mathematical Underpinning

  • Review Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Mathematical and computational modeling is in demand to help address current challenges in mechanobiology of musculoskeletal tissues. In particular for tendon, the high clinical importance of the tissue, the huge mechanical demands placed on it and its ability to adapt to these demands, require coupled, multiscale models incorporating complex geometrical and microstructural information as well as time-based descriptions of cellular activity and response.

This review introduces the information sources required to develop such multiscale models. It covers tissue structure and biomechanics, cell biomechanics, the current understanding of tendon’s ability in health and disease to update its properties and structure and the few already existing multiscale mechanobiological models of the tissue. Finally, a sketch is provided of what such models could achieve ideally, pointing out where experimental data and knowledge are still missing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amiel, D., Frank, C., Harwood, F., Fronek, J., & Akeson, W. (1984). Tendons and ligaments: a morphological and biochemical comparison. J. Orthop. Res., 1, 257–265.

    Article  Google Scholar 

  • Anssari-Benam, A., Legerlotz, K., Bader, D. L., & Screen, H. R. (2012). On the specimen length dependency of tensile mechanical properties in soft tissues: gripping effects and the characteristic decay length. J. Biomech., 45(14), 2481–2482.

    Article  Google Scholar 

  • Archambault, J., Elfervig-Wall, M. K., Tsuzaki, M., Herzog, W., & Banes, A. J. (2002). Rabbit tendon cells produce MMP-3 in response to fluid flow without significant calcium transients. J. Biomech., 35, 303–309.

    Article  Google Scholar 

  • Arnoczky, S. P., Tian, T., & Lavagnino, M. (2004). Gardner, K. Ex vivo static tensile loading inhibits MMP-1 expression in rat tail tendon cells through a cytoskeletally based mechanotransduction mechanism. J. Orthop. Res., 22, 328–333.

    Article  Google Scholar 

  • Arnoczky, S. P., Lavagnino, M., & Egerbacher, M. (2007a). The mechanobiological aetiopathogenesis of tendinopathy: is it the over-stimulation or the under-stimulation of tendon cells? Int. J. Exp. Pathol., 88, 217–226.

    Article  Google Scholar 

  • Arnoczky, S. P., Lavagnino, M., Egerbacher, M., Caballero, O., & Gardner, K. (2007b). Matrix metalloproteinase inhibitors prevent a decrease in the mechanical properties of stress-deprived tendons: an in vitro experimental study. Am. J. Sports Med., 35, 763–769.

    Article  Google Scholar 

  • Arya, S., & Kulig, K. (2010). Tendinopathy alters mechanical and material properties of the Achilles tendon. J. Appl. Physiol., 108(3), 670–675.

    Article  Google Scholar 

  • Baer, E., Hiltner, A., & Keith, H. D. (1987). Hierarchical structure in polymeric materials. Science, 235, 1015–1022.

    Article  Google Scholar 

  • Benjamin, M., Toumi, H., Ralphs, J. R., Bydder, G., Best, T. M., & Milz, S. (2006). Where tendons and ligaments meet bone: attachment sites (‘entheses’) in relation to exercise and/or mechanical load. J. Anat., 208, 471–490.

    Google Scholar 

  • Bi, Y., Ehirchio, D., Kilts, T. M., Inkson, C. A., Embree, M. C., Sonoyama, W., Li, L., Leet, A. I., Seo, B.-M., Zhang, L., Shi, S., & Young, M. F. (2007). Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat. Med., 13, 1219–1227.

    Article  Google Scholar 

  • Birch, H. L. (2007). Tendon matrix composition and turnover in relation to functional requirements. Int. J. Exp. Pathol., 88, 241–248.

    Article  Google Scholar 

  • Birch, H. L., Worboys, S., Eissa, S., Jackson, B., Strassburg, S., & Clegg, P. D. (2008). Matrix metabolism rate differs in functionally distinct tendons. Matrix Biology, 27(3), 182–189.

    Google Scholar 

  • Boorman, R. S., Norman, T., Matsen, F. A. III, & Clark, J. M. (2006). Using a freeze substitution fixation technique and histological crimp analysis for characterizing regions of strain in ligaments loaded in situ. J. Orthop. Res., 24, 793–799.

    Article  Google Scholar 

  • Brangwynne, C. P., MacKintosh, F. C., Kumar, S., Geisse, N. A., Talbot, J., Mahadevan, L., Parker, K. K., Ingber, D. E., & Weitz, D. A. (2006). Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J. Cell Biol., 173, 733–741.

    Article  Google Scholar 

  • Brown, P., Alsousou, J., Thompson, M. S., & Noble, J. A. (2012). Controlled motion strain measurement using lateral speckle tracking in Achilles tendons during healing. In 9th IEEE international symposium on biomedical imaging (ISBI) (pp. 1104–1107).

    Chapter  Google Scholar 

  • Buckley, C. P., Lloyd, D. W., & Konopasek, M. (1980). On the deformation of slender filaments with planar crimp: theory, numerical solution and applications to tendon collagen and textile materials. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 372, 33–64.

    Article  MATH  Google Scholar 

  • Canty, E. G., & Kadler, K. E. (2005). Procollagen trafficking, processing and fibrillogenesis. J. Cell Sci., 118, 1341–1353. Pt 7.

    Article  Google Scholar 

  • Carter, D. R., & Wong, M. (1988). The role of mechanical loading histories in the development of diarthrodial joints. J. Orthop. Res., 6(6), 804–816.

    Article  Google Scholar 

  • Carter, D. R., Beaupre, G. S., Giori, N. J., & Helms, J. A. (1998). Mechanobiology of skeletal regeneration. Clin. Orthop. Relat. Res., 355S, S41–S55.

    Article  Google Scholar 

  • Chen, D., Norris, D., & Ventikos, Y. (2009). The active and passive ciliary motion in the embryo node: a computational fluid dynamics model. J. Biomech., 42, 210–216.

    Article  Google Scholar 

  • Cheng, V. W. T., & Screen, H. R. C. (2007). The micro-structural strain response of tendon. J. Mater. Sci., 42, 8957–8965.

    Article  Google Scholar 

  • Ciarletta, P., Micera, S., Accoto, D., & Dario, P. (2006). A novel microstructural approach in tendon viscoelastic modelling at the fibrillar level. J. Biomech., 39, 2034–2042.

    Article  Google Scholar 

  • Craig, A. S., Birtles, M. J., Conway, J. F., & Parry, D. A. D. (1989). An estimate of the mean length of collagen fibrils in rat tail-tendon as a function of age. Connect. Tissue Res., 19, 51–62.

    Article  Google Scholar 

  • Cribb, A. M., & Scott, J. E. (1995). Tendon response to tensile stress: an ultrastructural investigation of collagen:proteoglycan interactions in stressed tendon. J. Anat., 187, 423–428.

    Google Scholar 

  • Cusack, S., & Miller, A. (1979). Determination of the elastic constants of collagen by Brillouin light scattering. J. Mol. Biol., 135, 39–51.

    Article  Google Scholar 

  • Diamant, J., Keller, A., Baer, E., Litt, M., & Arridge, R. G. C. (1972). Collagen ultrastructure and its relation to mechanical properties as a function of ageing. Proc. R. Soc. Lond. B, Biol. Sci., 180, 293–315.

    Article  Google Scholar 

  • Donnelly, E., Ascenzi, M.-G., & Farnum, C. (2010). Primary cilia are highly oriented with respect to collagen direction and long axis of extensor tendon. J. Orthop. Res., 28, 77–82.

    Google Scholar 

  • Eliasson, P., Andersson, T., & Aspenberg, P. (2009). Rat Achilles tendon healing: mechanical loading and gene expression. J. Appl. Physiol., 107, 399–407.

    Article  Google Scholar 

  • Fabry, B., Maksym, G. N., Butler, J. P., Glogauer, M., Navajas, D., & Fredberg, J. J. (2001). Scaling the microrheology of living cells. Phys. Rev. Lett., 87(14), 148102.

    Article  Google Scholar 

  • Fessel, G., & Snedeker, J. G. (2011). Equivalent stiffness after glycosaminoglycan depletion in tendon—an ultra-structural finite element model and corresponding experiments. J. Theor. Biol., 268(1), 77–83.

    Article  Google Scholar 

  • Foolen, J., van Donkelaar, C. C., Soekhradj-Soechit, S., & Ito, K. (2010). European Society of Biomechanics S.M. Perren Award 2010: an adaptation mechanism for fibrous tissue to sustained shortening. J. Biomech., 43(16), 3168–3176.

    Article  Google Scholar 

  • Franchi, M., Fini, M., Quaranta, M., De Pasquale, V., Raspanti, M., Giavaresi, G., Ottani, V., & Ruggeri, A. (2007). Crimp morphology in relaxed and stretched rat Achilles tendon. J. Anat., 210, 1–7.

    Article  Google Scholar 

  • Franchi, M., Raspanti, M., Dell’Orbo, C., Quaranta, M., De Pasquale, V., Ottani, V., & Ruggeri, A. (2008). Different crimp patterns in collagen fibrils relate to the subfibrillar arrangement. Connect. Tissue Res., 49, 85–91.

    Article  Google Scholar 

  • Franchi, M., Ottani, V., Stagni, R., & Ruggeri, A. (2010). Tendon and ligament fibrillar crimps give rise to left-handed helices of collagen fibrils in both planar and helical crimps. J. Anat., 216, 301–309.

    Article  Google Scholar 

  • Fratzl, P., Misof, K., Zizak, I., Rapp, G., Amenitsch, H., & Bernstorff, S. (1998). Fibrillar structure and mechanical properties of collagen. J. Struct. Biol., 122, 119–122.

    Article  Google Scholar 

  • Freed, A. D., & Doehring, T. C. (2005). Elastic model for crimped collagen fibrils. J. Biomech. Eng., 127, 587–593.

    Article  Google Scholar 

  • Frisén, M., Mägi, M., Sonnerup, L., & Viidik, A. (1969). Rheological analysis of soft collagenous tissue Part I: Theoretical considerations. J. Biomech., 2, 13–20.

    Article  Google Scholar 

  • Fung, D. T., Wang, V. M., Laudier, D. M., Shine, J. H., Basta-Pljakic, J., Jepsen, K. J., Schaffler, M. B., & Flatow, E. L. (2009). Subrupture tendon fatigue damage. J. Orthop. Res., 27, 264–273.

    Article  Google Scholar 

  • Fung, D. T., Wang, V. M., Andarawis-Puri, N., Basta-Pljakic, J., Li, Y., Laudier, D. M., Sun, H. B., Jepsen, K. J., Schaffler, M. B., & Flatow, E. L. (2010). Early response to tendon fatigue damage accumulation in a novel in vivo model. J. Biomech., 43(2), 274–279.

    Article  Google Scholar 

  • Garikipati, K., Göktepe, S., & Miehe, C. (2008). Elastica-based strain energy functions for soft biological tissue. J. Mech. Phys. Solids, 56, 1693–1713.

    Article  MathSciNet  MATH  Google Scholar 

  • Gautieri, A., Vesentini, S., Redaelli, A., & Buehler, M. J. (2011). Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett., 11(2), 757–766.

    Article  Google Scholar 

  • Goh, K. L., Holmes, D. F., Lu, H.-Y., Richardson, S., Kadler, K. E., Purslow, P. P., & Wess, T. J. (2008). Ageing changes in the tensile properties of tendons: influence of collagen fibril volume fraction. J. Biomech. Eng., 130, 021011.

    Article  Google Scholar 

  • Goh, K. L., Holmes, D., Lu, Y., Purslow, P. P., Bechet, D., Kadler, K., & Wess, T. (2012). Bimodal collagen fibril diameter distributions direct age-related variations in tendon resilience and resistance to rupture. J. Appl. Physiol.

  • Grant, T. A., Thompson, M. S., Urban, J., & Yu, J. (2013, in press). Organization of elastic fibres in tendon shows a close association with tenocytes. J. Anat. doi:10.1111/joa.12048

  • Grytz, R., & Meschke, G. (2009). Constitutive modelling of crimped collagen fibrils in soft tissues. J. Mech. Behav. Biomed. Mater., 2, 522–533.

    Article  Google Scholar 

  • Guilak, F., Alexopoulos, L. G., Upton, M. L., Youn, I., Choi, J. B., Cao, L., Setton, L. A., & Haider, M. A. (2006). The pericellular matrix as a transducer of biomechanical and biochemical signals in articular cartilage. Ann. N.Y. Acad. Sci., 1068, 498–512.

    Article  Google Scholar 

  • Gutsmann, T., Fantner, G. E., Venturoni, M., Ekani-Nkodo, A., Thompson, J. B., Kindt, J. H., Morse, D. E., Fygenson, D. K., & Hansma, P. K. (2003). Evidence that collagen fibrils in tendons are inhomogeneously structured in a tubelike manner. Biophys. J., 84(4), 2593–2598.

    Article  Google Scholar 

  • Gutsmann, T., Fantner, G. E., Kindt, J. H., Venturoni, M., Danielsen, S., & Hansma, P. K. (2004). Force spectroscopy of collagen fibers to investigate their mechanical properties and structural organization. Biophys. J., 86(5), 3186–3193.

    Article  Google Scholar 

  • Hansen, K. A., Weiss, J. A., & Barton, J. K. (2002). Recruitment of tendon crimp with applied strain. J. Biomech. Eng., 124, 72–77.

    Article  Google Scholar 

  • Hansen, P., Hassenkam, T., Svensson, R. B., Aagaard, P., Trappe, T., Haraldsson, B. T., Kjaer, M., & Magnusson, M. (2009). Glutaraldehyde cross-linking of tendon—mechanical effects at the level of the tendon fascicle and fibril. Connect. Tissue Res., 50, 211–222.

    Article  Google Scholar 

  • Haraldsson, B. T., Aagaard, P., Krogsgaard, M., Alkjaer, T., Kjaer, M., & Magnusson, S. P. (2005). Region-specific mechanical properties of the human patella tendon. J. Appl. Physiol., 98, 1006–1012.

    Article  Google Scholar 

  • Haraldsson, B. T., Aagaard, P., Qvortrup, K., Bojsen-Moller, J., Krogsgaard, M., Koskinen, S., Kjaer, M., & Magnusson, S. P. (2008). Lateral force transmission between human tendon fascicles. Matrix Biology, 27, 86–95.

    Article  Google Scholar 

  • Haraldsson, B. T., Aagaard, P., Crafoord-Larsen, D., Kjaer, M., & Magnusson, S. P. (2009). Corticosteroid administration alters the mechanical properties of isolated collagen fascicles in rat-tail tendon. Scand. J. Med. Sci. Sports, 19, 621–626.

    Article  Google Scholar 

  • Hariton, I., de Botton, G., Gasser, T. C., & Holzapfel, G. A. (2007). Stress-driven collagen fiber remodeling in arterial walls. Biomech. Model. Mechanobiol., 6(3), 163–175.

    Article  Google Scholar 

  • Harley, R., James, D., Miller, A., & White, J. W. (1977). Phonons and the elastic moduli of collagen and muscle. Nature, 267, 284–287.

    Article  Google Scholar 

  • Hayakawa, K., Tatsumi, H., & Sokabe, M. (2008). Actin stress fibers transmit and focus force to activate mechanosensitive channels. J. Cell Sci., 121, 496–503.

    Article  Google Scholar 

  • Herchenhan, A., Kalson, N. S., Holmes, D. F., Hill, P., Kadler, K. E., & Margetts, L. (2011). Tenocyte contraction induces crimp formation in tendon-like tissue. Biomechanics and Modeling in Mechanobiology.

  • Hodge, A. J., & Petruska, J. A. (1963). Recent studies with the electron microscope on ordered aggregates of the tropocollagen molecule. In G. N. Ramachandran (Ed.), Aspects of protein structure (pp. 289–300). London: Academic Press.

    Google Scholar 

  • Hu, S., Chen, J., Fabry, B., Numaguchi, Y., Gouldstone, A., Ingber, D. E., Fredberg, J. J., Butler, J. P., & Wang, N. (2003). Intracellular stress tomography reveals stress focusing and structural anisotropy in cytoskeleton of living cells. Am. J. Physiol., Cell Physiol., 285, C1082–C1090.

    Article  Google Scholar 

  • Hulmes, D. J. S. (2002). Building collagen molecules, fibrils, and suprafibrillar structures. J. Struct. Biol., 137, 2–10.

    Article  Google Scholar 

  • Hurschler, C., Loitz-Ramage, B., & Vanderby, R. (1997). A structurally based stress-stretch relationship for tendon and ligament. J. Biomech. Eng., 119, 392–399.

    Article  Google Scholar 

  • Ingber, D. E. (1993). Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J. Cell Sci., 104(613), 627.

    Google Scholar 

  • Isaksson, H., Wilson, W., van Donkelaar, C. C., Huiskes, R., & Ito, K. (2006). Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing. J. Biomech., 39, 1507–1516.

    Article  Google Scholar 

  • Jozsa, L., & Kannus, P. (1997). Part III: tendon injuries. Human tendons: anatomy, physiology and pathology. Champaign: Human Kinetics.

    Google Scholar 

  • Kannus, P. (2000). Structure of the tendon connective tissue. Scand. J. Med. Sci. Sports, 10, 312–320.

    Article  Google Scholar 

  • Ker, R. F., Wang, X. T., & Pike, A. V. (2000). Fatigue quality of mammalian tendons. J. Exp. Biol., 203, 1317–1327.

    Google Scholar 

  • Komolafe, O. A., & Doehring, T. C. (2010). Fascicle-scale loading and failure behavior of the Achilles tendon. J. Biomech. Eng., 132(2), 021004.

    Article  Google Scholar 

  • Koob, T. J., & Vogel, K. G. (1987). Site-related variations in glycosaminoglycan content and swelling properties of bovine flexor tendon. J. Orthop. Res., 5, 414–424.

    Article  Google Scholar 

  • Koob, T. J., Clark, P. E., Hernandez, D. J., Thurmond, F. A., & Vogel, K. G. (1992). Compression loading in vitro regulates proteoglycan synthesis by tendon fibrocartilage. Arch. Biochem. Biophys., 298, 303–312.

    Article  Google Scholar 

  • Kwan, M. K., & Woo, S. L.-Y. (1989). A structural model to describe the nonlinear stress-strain behavior for parallel-fibred collagenous tissues. J. Biomech. Eng., 111, 361–363.

    Article  Google Scholar 

  • Lacroix, D., & Prendergast, P. J. (2002). A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J. Biomech., 35, 1163–1171.

    Article  Google Scholar 

  • Lacroix, D., Planell, J. A., & Prendergast, P. J. (2009). Computer-aided design and finite-element modelling of biomaterial scaffolds for bone tissue engineering. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci., 367(1895), 1993–2009.

    Article  MATH  Google Scholar 

  • Lavagnino, M., Arnoczky, S. P., Tian, T., & Vaupel, Z. (2003). Effect of amplitude and frequency of cyclic tensile strain on the inhibition of MMP-1 mRNA expression in tendon cells: an in vitro study. Connect. Tissue Res., 44(3–4), 181–187.

    Google Scholar 

  • Lavagnino, M., Arnoczky, S. P., Kepich, E., Caballero, O., & Haut, R. C. (2008). A finite element model predicts the mechanotransduction response of tendon cells to cyclic tensile loading. Biomech. Model. Mechanobiol., 7, 405–416.

    Article  Google Scholar 

  • Lavagnino, M., Arnoczky, S. P., & Gardner, K. (2011). In situ deflection of tendon cell-cilia in response to tensile loading: an in vitro study. J. Orthop. Res., 29(6), 925–930.

    Article  Google Scholar 

  • Lazopoulos, K. A., & Stamenovic, D. (2008). Durotaxis as an elastic stability phenomenon. J. Biomech., 41, 1289–1294.

    Article  Google Scholar 

  • Legerlotz, K., Riley, G. P., & Screen, H. R. (2010). Specimen dimensions influence the measurement of material properties in tendon fascicles. J. Biomech., 43(12), 2274–2280.

    Article  Google Scholar 

  • Lo, C.-M., Wang, H.-B., Dembo, M., & Wang, Y.-L. (2000). Cell movement is guided by the rigidity of the substrate. Biophys. J., 79, 144–152.

    Article  Google Scholar 

  • Lujan, T. J., Underwood, C. J., Jacobs, N. T., & Weiss, J. A. (2009). Contribution of glycosaminoglycans to viscoelastic tensile behaviour of human ligaments. J. Appl. Physiol., 106, 423–431.

    Article  Google Scholar 

  • Magnusson, S. P., Langberg, H., & Kjaer, M. (2010). The pathogenesis of tendinopathy: balancing the response to loading. Nat. Rev. Rheumatol., 6(5), 262–268.

    Article  Google Scholar 

  • Marenzana, M., Wilson-Jones, N., Mudera, V., & Brown, R. A. (2006). The origins and regulation of tissue tension: Identification of collagen tension-fixation process in vitro. Exp. Cell Res., 312, 423–433.

    Article  Google Scholar 

  • McDougall, S., Dallon, J., Sheratt, J., & Maini, P. (2006). Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci., 364, 1385–1405.

    Article  Google Scholar 

  • McNeilly, C. M., Banes, A. J., Benjamin, M., & Ralphs, J. R. (1996). Tendon cells in vivo form a three dimensional network of cell processes linked by gap junctions. J. Anat., 189, 593–600.

    Google Scholar 

  • Meshel, A. S., Wei, Q., Adelstein, R. S., & Sheetz, M. P. (2005). Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Nat. Cell Biol., 7, 157–164.

    Article  Google Scholar 

  • Myers, K. A., Rattner, J. B., Shrive, N. G., & Hart, D. A. (2007). Osteoblast-like cells and fluid flow: Cytoskeleton-dependent shear sensitivity. Biochem. Biophys. Res. Commun., 364, 214–219.

    Article  Google Scholar 

  • O’Brien, T. D., Reeves, N. D., Baltzopoulos, V., Jones, D. A., & Maganaris, C. N. (2010). Mechanical properties of the patellar tendon in adults and children. J. Biomech., 43, 1190–1195.

    Article  Google Scholar 

  • Onambélé, G. N. L., Burgess, K., & Pearson, S. J. (2007, in press). Gender-specific in vivo measurement of the structural and mechanical properties of the human patellar tendon. J. Orthop. Res.

  • Orgel, J. P., Irving, T. C., Miller, A., & Wess, T. J. (2006). Microfibrillar structure of type I collagen in situ. Proc. Natl. Acad. Sci. USA, 103, 9001–9005.

    Article  Google Scholar 

  • Parkinson, J., Samiric, T., Ilic, M. Z., Cook, J., & Handley, C. J. (2011). Involvement of proteoglycans in tendinopathy. J. Musculoskelet. Neuronal Interact., 11(2), 86–93.

    Google Scholar 

  • Parry, D. A., & Craig, A. S. (1978). Collagen fibrils and elastic fibers in rat-tail tendon: an electron microscopic investigation. Biopolymers, 17(4), 843–845.

    Article  Google Scholar 

  • Parry, D. A. D., Barnes, G. R. G., & Craig, A. S. (1978). A comparison of the size distribution of collagen fibrils in connective tissues as a function of age and a possible relation between fibril size distribution and mechanical properties. Proc. R. Soc. Lond. B, Biol. Sci., 203, 305–321.

    Article  Google Scholar 

  • Pavalko, F. M., Chen, N. X., Turner, C. H., Burr, D. B., Atkinson, S., Hsieh, Y.-F., Qiu, J., & Duncan, R. L. (1998). Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions. Am. J. Physiol., Cell Physiol., 275, 1591–1601.

    Google Scholar 

  • Petruska, J. A., & Hodge, A. J. (1964). A subunit model for the tropocollagen macromolecule. Proc. Natl. Acad. Sci. USA, 51, 871–876.

    Article  Google Scholar 

  • Provenzano, P. P., & Vanderby, R. (2006). Collagen fibril morphology and organization: implications for force transmission in ligament and tendon. Matrix Biology, 25, 71–84.

    Article  Google Scholar 

  • Puxkandl, R., Zizak, I., Paris, O., Keckes, J., Tesch, W., Bernstorff, S., Purslow, P., & Fratzl, P. (2002). Viscoelastic properties of collagen: synchrotron radiation investigations and structural model. Philos. Trans. R. Soc. Lond. B, Biol. Sci., 357, 191–197.

    Article  Google Scholar 

  • Ralphs, J. R., Waggett, A. D., & Benjamin, M. (2002). Actin stress fibres and cell-cell adhesion molecules in tendons: organisation in vivo and response to mechanical loading of tendon cells in vitro. Matrix Biology, 21, 67–74.

    Article  Google Scholar 

  • Reese, S. P., Maas, S. A., & Weiss, J. A. (2010). Micromechanical models of helical superstructures in ligament and tendon fibers predict large Poisson’s ratios. J. Biomech., 43(7), 1394–1400.

    Article  Google Scholar 

  • Reeves, N. D. (2006). Adaptation of the tendon to mechanical usage. J. Musculoskelet. Neuronal Interact., 6, 174–180.

    Google Scholar 

  • Reeves, N. D., Maganaris, C. N., Ferretti, G., & Narici, M. V. (2005). Influence of 90-day simulated microgravity on human tendon mechanical properties and the effect of resistive countermeasures. J. Appl. Physiol., 98(6), 2278–2286.

    Article  Google Scholar 

  • Reuvers, J., Thoreson, A. R., Zhao, C., Zhang, L., Jay, G. D., An, K. N., Warman, M. L., & Amadio, P. C. (2011). The mechanical properties of tail tendon fascicles from lubricin knockout, wild type and heterozygous mice. J. Struct. Biol., 176(1), 41–45.

    Article  Google Scholar 

  • Rigozzi, S., Stemmer, A., Muller, R., & Snedeker, J. G. (2011). Mechanical response of individual collagen fibrils in loaded tendon as measured by atomic force microscopy. J. Struct. Biol., 176(1), 9–15.

    Article  Google Scholar 

  • Ritty, T. M., Ditsios, K., & Starcher, B. C. (2002). Distribution of the elastic fiber and associated proteins in flexor tendon reflects function. Anat. Rec., 268, 430–440.

    Article  Google Scholar 

  • Robinson, P. S., Huang, T. F., Kazam, E., Iozzo, R. V., Birk, D. E., & Soslowsky, L. J. (2005). Influence of decorin and biglycan on mechanical properties of multiple tendons in knockout mice. J. Biomech. Eng., 127, 181–185.

    Article  Google Scholar 

  • Rumian, A. P., Wallace, A. L., & Birch, H. L. (2007). Tendons and ligaments are anatomically distinct but overlap in molecular and morphological features—a comparative study in an ovine model. J. Orthop. Res., 25, 458–464.

    Article  Google Scholar 

  • Sasaki, N., & Odajima, S. (1996a). Stress-strain curve and Young’s modulus of a collagen molecule as determined by the X-ray diffraction technique. J. Biomech., 29, 655–658.

    Article  Google Scholar 

  • Sasaki, N., & Odajima, S. (1996b). Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. J. Biomech., 29, 1131–1136.

    Article  Google Scholar 

  • Schepull, T., Kvist, J., Andersson, C., & Aspenberg, P. (2007). Mechanical properties during healing of Achilles tendon ruptures to predict final outcome: a pilot Roentgen stereophotogrammetric analysis in 10 patients. BMC Musculoskelet. Disord., 8, 116.

    Article  Google Scholar 

  • Schwartz, E. A., Leonard, M. L., Bizios, R., & Bowser, S. S. (1997). Analysis and modelling of the primary cilium bending response to fluid shear. Am. J. Physiol., Ren. Fluid Electrolyte Physiol., 41, F132–F138.

    Google Scholar 

  • Schweitzer, R., Chyung, J. H., Murtaugh, L. C., Brent, A. E., Rosen, V., Olson, E. N., Lassar, A., & Tabin, C. J. (2001). Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development, 128(19), 3855–3866.

    Google Scholar 

  • Scott, J. E. (2003). Elasticity in extracellular matrix ‘shape modules’ of tendon, cartilage etc. A sliding proteoglycan-filament model. J. Physiol., 553, 335–343.

    Article  Google Scholar 

  • Screen, H. R. C., Shelton, J. C., Chhaya, V. H., Kayser, M. V., Bader, D. L., & Lee, D. A. (2005). The influence of noncollagenous matrix components on the micromechanical environment of tendon fascicles. Ann. Biomed. Eng., 33, 1090–1099.

    Article  Google Scholar 

  • Screen, H. R. C., Chhaya, V. H., Greenwald, S. E., Bader, D. L., Lee, D. A., & Shelton, J. C. (2006). The influence of swelling and matrix degradation on the microstructural integrity of tendon. Acta Biomater., 2, 505–513.

    Article  Google Scholar 

  • Screen, H. R., Seto, J., Krauss, S., Boesecke, P., & Gupta, H. S. (2011). Extrafibrillar diffusion and intrafibrillar swelling at the nanoscale are associated with stress relaxation in the soft collagenous matrix tissue of tendons. Soft Matter, 7, 11243.

    Article  Google Scholar 

  • Singla, V., & Reiter, J. F. (2006). The primary cilium as the cell’s antenna: signaling at a sensory organelle. Science, 313, 629–633.

    Article  Google Scholar 

  • Smith, K. D., Vaughan-Thomas, A., Spiller, D. G., Innes, J. F., Clegg, P. D., & Comerford, E. J. (2011). The organisation of elastin and fibrillins 1 and 2 in the cruciate ligament complex. J. Anat., 218(6), 600–607.

    Article  Google Scholar 

  • Snedeker, J. G., Pelled, G., Zilberman, Y., Ben Arav, A., Huber, E., Müller, R., & Gazit, D. (2009). An analytical model for elucidating tendon tissue structure and biomechanical function from in vivo cellular confocal microscopy images. Cells Tissues Organs, 190, 111–119.

    Article  Google Scholar 

  • Stamenovic, D. (2008). Rheological behavior of mammalian cells. Cell. Mol. Life Sci., 65(22), 3592–3605.

    Article  Google Scholar 

  • Starborg, T., Lu, Y., Huffman, A., Holmes, D. F., & Kadler, K. E. (2009). Electron microscope 3D reconstruction of branched collagen fibrils in vivo. Scand. J. Med. Sci. Sports, 19, 547–552.

    Article  Google Scholar 

  • Stouffer, D. C., Butler, D. L., & Hosny, D. (1985). The relationship between crimp pattern and mechanical response of human patellar tendon-bone units. J. Biomech. Eng., 107, 158–165.

    Article  Google Scholar 

  • Sun, Y.-L., Luo, Z.-P., Fertala, A., & An, K.-N. (2002). Direct quantification of the flexibility of type I collagen monomer. Biochem. Biophys. Res. Commun., 295, 382–386.

    Article  Google Scholar 

  • Svensson, R. B., Hassenkam, T., Hansen, P., Kjaer, M., & Magnusson, S. P. (2011). Tensile force transmission in human patellar tendon fascicles is not mediated by glycosaminoglycans. Connect. Tissue Res., 52(5), 415–421.

    Article  Google Scholar 

  • Svensson, R. B., Hansen, P., Hassenkam, T., Haraldsson, B. T., Aagaard, P., Kovanen, V., Krogsgaard, M., Kjaer, M., & Magnusson, S. P. (2012). Mechanical properties of human patellar tendon at the hierarchical levels of tendon and fibril. J. Appl. Physiol., 112(3), 419–426.

    Article  Google Scholar 

  • Taylor, S. E., Vaughan-Thomas, A., Clements, D. N., Pinchbeck, G., Macrory, L. C., Smith, R. K., & Clegg, P. D. (2009). Gene expression markers of tendon fibroblasts in normal and diseased tissue compared to monolayer and three dimensional culture systems. BMC Musculoskelet. Disord., 10, 27.

    Article  Google Scholar 

  • Thompson, M. S., Abercrombie, S. R., Ott, C. E., Bieler, F. H., Duda, G. N., & Ventikos, Y. (2011). Quantification and significance of fluid shear stress field in biaxial cell stretching device. Biomech. Model. Mechanobiol., 10, 559–564.

    Article  Google Scholar 

  • Thorpe, C. T., Streeter, I., Pinchbeck, G. L., Goodship, A. E., Clegg, P. D., & Birch, H. L. (2010). Aspartic acid racemization and collagen degradation markers reveal an accumulation of damage in tendon collagen that is enhanced with aging. J. Biol. Chem., 285(21), 15674–15681.

    Article  Google Scholar 

  • van der Rijt, J. A., van der Werf, K. O., Bennink, M. L., Dijkstra, P. J., & Feijen, J. (2006). Micromechanical testing of individual collagen fibrils. Macromol. Biosci., 6, 697–702.

    Article  Google Scholar 

  • Vetter, A., Witt, F., Sander, O., Duda, G. N., & Weinkamer, R. (2012). The spatio-temporal arrangement of different tissues during bone healing as a result of simple mechanobiological rules. Biomech. Model. Mechanobiol., 11(1–2), 147–160.

    Article  Google Scholar 

  • Virchenko, O., Fahlgren, A., Rundgren, M., & Aspenberg, P. (2008). Early Achilles tendon healing in sheep. Arch. Orthop. Trauma Surg., 128, 1001–1006.

    Article  Google Scholar 

  • Vogel, H. G. (1991). Species differences of elastic and collagenous tissue—influence of maturation and age. Mech. Ageing Dev., 57(1), 15–24.

    Article  Google Scholar 

  • Volokh, K. Y., Vilnay, O., & Belsky, M. (2000). Tensegrity architecture explains linear stiffening and predicts softening of living cells. J. Biomech., 33, 1543–1549.

    Article  Google Scholar 

  • Waggett, A. D., Benjamin, M., & Ralphs, J. R. (2006), Connexin 32 and 43 gap junctions differentially modulate tenocyte response to cyclic mechanical load. Eur. J. Cell Biol., 85, 1145–1154.

    Article  Google Scholar 

  • Wall, M. E., & Banes, A. J. (2005). Early responses to mechanical load in tendon: role for calcium signalling, gap junctions and intercellular communication. J. Musculoskelet. Neuronal Interact., 5, 70–84.

    Google Scholar 

  • Wall, M. E., Otey, C., Qi, J., & Banes, A. J. (2007a). Connexin 43 is localized with actin in tenocytes. Cell Motil. Cytoskelet., 64(2), 121–130.

    Article  Google Scholar 

  • Wall, M. E., Weinhold, P. S., Siu, T., Brown, T. D., & Banes, A. J. (2007b). Comparison of cellular strain with applied substrate strain in vitro. J. Biomech., 40, 173–181.

    Article  Google Scholar 

  • Wang, X. T., & Ker, R. F. (1995). Creep rupture of wallaby tail tendons. J. Exp. Biol., 198, 831–845.

    Google Scholar 

  • Wenger, M. P. E., Bozec, L., Horton, M. A., & Mesquida, P. (2007). Mechanical properties of collagen fibrils. Biophys. J., 93, 1255–1263.

    Article  Google Scholar 

  • Wenger, M. P., Horton, M. A., & Mesquida, P. (2008). Nanoscale scraping and dissection of collagen fibrils. Nanotechnology, 19, 384006.

    Article  Google Scholar 

  • Yang, G., & Im, H. J. (2005). Wang, J.H. Repetitive mechanical stretching modulates IL-1beta induced COX-2, MMP-1 expression, and PGE2 production in human patellar tendon fibroblasts. Gene, 363, 166–172.

    Article  Google Scholar 

  • Yang, G., Crawford, R. C., & Wang, J. H. (2004). Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions. J. Biomech., 37(10), 1543–1550.

    Article  Google Scholar 

  • Yoon, J. H., & Halper, J. (2005). Tendon proteoglycans: biochemistry and function. J. Musculoskelet. Neuronal Interact., 5, 22–34.

    Google Scholar 

  • Zhang, J., Pan, T., Liu, Y., & Wang, J. H. (2010). Mouse treadmill running enhances tendons by expanding the pool of tendon stem cells (TSCs) and TSC-related cellular production of collagen. J. Orthop. Res., 28(9), 1178–1183.

    Article  Google Scholar 

Download references

Acknowledgements

The support of the NIHR Musculoskeletal Biomedical Research Unit and the Rosestrees Trust is gratefully acknowledged. I would like to thank the members of the Oxford Mechanobiology Group for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Thompson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, M.S. Tendon Mechanobiology: Experimental Models Require Mathematical Underpinning. Bull Math Biol 75, 1238–1254 (2013). https://doi.org/10.1007/s11538-013-9850-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9850-5

Keywords

Navigation