Skip to main content

Advertisement

Log in

The micro-structural strain response of tendon

  • Nano- and micromechanical properties of hierarchical biological materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Tendons are multi-level fibre-reinforced composites, designed to transmit muscle forces to the skeleton. During physiological loading, tendons experience tensile loads, which are transmitted through the structure to the cells, where they may initiate mechanotransduction pathways. The current study examines the structural reorganisation and resulting local strain fields within the tendon matrix under tensile load. It uses confocal microscopy to photobleached a grid onto the collagen and image its deformation under the application of incremental tensile strain. Six parameters are used to quantify fibril and fibre movement and examine the mechanisms of extension employed by fascicles.

Results demonstrated an inhomogeneous strain response throughout the matrix and large variability between samples. Local strains in the loading axis were significantly smaller than the applied values. However, large compressive strains, perpendicular to the loading axis, were recorded. The average Poisson’s ratio (0.8) suggested cells may experience significant compression during loading. Deflection of the grid lines, indicating sliding between collagen fibres, and rotation of the grid were also recorded. These data highlight the non-homogenous strain environment of fascicles and provide further evidence for fibre sliding under tensile load. They also suggested a rotary component to tendon response, which may indicate a helical organisation to the tendon matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Woo SLY (1982) Biorheology 19:385

    Google Scholar 

  2. Harris B (1980) Symp Soc Exp Biol 34:37

    CAS  Google Scholar 

  3. Hiltner A, Cassidy JJ, Baer E (1985) Ann Rev Mater Sci 15:455

    Article  CAS  Google Scholar 

  4. Benjamin M, Ralphs JR (1997) Histol Histopathol 12:1135

    CAS  Google Scholar 

  5. Ker RF (2002) CBPA 133:987

    Google Scholar 

  6. Elliott DM, Robinson PS, Gimbel JA, Sarver JJ, Abboud JA, Iozzo RV, Soslowsky LJ (2003) Ann Biomed Eng 31:599

    Article  Google Scholar 

  7. Wess TJ, Hammersley AP, Wess L, Miller A (1998) J Struct Biol 122:92

    Article  CAS  Google Scholar 

  8. Buehler MJ (2006) PNAS 103(33):12285

    Article  CAS  Google Scholar 

  9. Avery NC, Bailey AJ (2005) Scan J Med Sci Sports 15:231

    Article  CAS  Google Scholar 

  10. Wess TJ, Cairns DE (2005) J Synchrotron Rad 12:751

    Article  CAS  Google Scholar 

  11. Provenzano PP, Vanderby R Jr (2006) Matrix Biol 25:2–71

    Article  Google Scholar 

  12. Derwin KA, Soslowsky LJ, Kimura JH, Plaas AH (2001) J Orthop Res 19:269

    Article  CAS  Google Scholar 

  13. Redaelli A, Vesentini S, Soncini M, Vena P, Mantero S, Montevecchi FM (2003) J Biomech 36:1555

    Article  CAS  Google Scholar 

  14. Screen HR, Lee DA, Bader DL, Shelton JC (2004) J Eng Med 218:109

    CAS  Google Scholar 

  15. Scott JE, Orford R (1981) Biochem J 197:573

    Google Scholar 

  16. Scott JE (2003) J Physiol 55:2–335

    Google Scholar 

  17. Weber IT, Harrison RW, Iozzo RV (1996) J Biol Chem 271:31767

    Article  CAS  Google Scholar 

  18. Vesentini S, Redaelli A, Montevecchi FM (2005) J Biomech 38:433

    Article  Google Scholar 

  19. Sasaki N, Odajima S (1996) J. Biomech 29(5):655

    Article  CAS  Google Scholar 

  20. Puxkandl R, Zizak I, Paris O, Keckes J, Tesch W, Bernstorff S, Purslow P, Fratzl P (2002) Philos Trans R Soc Lond B Biol Sci 357:191

    Article  CAS  Google Scholar 

  21. Bruehlmann SB, Matyas JR, Duncan NA (2004) Spine 29:2612

    Article  Google Scholar 

  22. Screen HR, Shelton JC, Chhaya VH, Kayser MV, Bader DL, Lee DA (2005) Ann Biomed Eng 33(8):1090

    Article  Google Scholar 

  23. Bruehlmann SB, Kelly EJ, Duncan NA (2005) Trans Orthop Res Soc 30:389

    Google Scholar 

  24. Goodwin JS, Kenworthy AK (2005) Methods 37:154

    Article  CAS  Google Scholar 

  25. Koster M, Frahm T, Hauser H (2005) Curr Opin Biotech 16:28

    Article  Google Scholar 

  26. Woo HM, Kim MS, Kweon OK, Kim DY, Nam TC, Kim JH (2001) Br J Ophthalmol 85:345

    Article  CAS  Google Scholar 

  27. Davison PF, Galbavy EJ (1985) Invest Ophthalmol Vis Sci 26:1202

    CAS  Google Scholar 

  28. Arnoczky SP, Lavagnino M, Whallon JH, Hoonjan A (2002) J Orthop Res 20:29

    Article  Google Scholar 

  29. Petrán M, Boyde A, Hadravsky M (1990) In: Confocal microscopy. Academic Press, London, vol 9, p 262

  30. Hansen KA, Weiss JA, Barton JK (2002) J Biomech Eng 124:72

    Article  Google Scholar 

  31. Lanir Y, Salant EL, Foux A (1988) Biorheology 25:591

    CAS  Google Scholar 

  32. Hannafin JA, Arnoczky SP (1994) J Orthop Res 12:350

    Article  CAS  Google Scholar 

  33. Knight MM, van de Breevaart Bravenboor J, Lee DA, van Osch GJVM, Weinans H, Bader DL (2002) Biochim Biophys Acta 1570:1

    CAS  Google Scholar 

  34. Wang YN, Galiotis C, Bader DL (2000) J Biomech 33:483

    Article  CAS  Google Scholar 

  35. Yahia LH, Drouin G (1989) J Orthop Res 7:2–243

    Article  Google Scholar 

  36. de Campos Vidal B (2003) Micron 34:423

    Article  Google Scholar 

  37. Kannus P (2000) Scand J Med Sci Sports 10:312

    Article  CAS  Google Scholar 

  38. Ottani V, Martini D, Franchi M, Ruggeri A, Raspanti M (2002) Micron 33:587

    Article  CAS  Google Scholar 

  39. Wess TJ, Hammersley AP, Wess L, Miller A (1998) J Mol Biol 275:255

    Article  CAS  Google Scholar 

  40. de Campos Vidal B (2006) Matrix Biol 25:132

    Article  Google Scholar 

  41. Raspanti M, Manelli A, Franchi M, Ruggeri A (2005) Matrix Biol 24:503

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Many thanks to Dr. Martin Knight, for his expert advice and assistance with the confocal microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hazel R. C. Screen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, V.W.T., Screen, H.R.C. The micro-structural strain response of tendon. J Mater Sci 42, 8957–8965 (2007). https://doi.org/10.1007/s10853-007-1653-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-1653-3

Keywords

Navigation