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                    Abstract
The diffusion of finite-size hard-core interacting particles in two- or three-dimensional confined domains is considered in the limit that the confinement dimensions become comparable to the particle’s dimensions. The result is a nonlinear diffusion equation for the one-particle probability density function, with an overall collective diffusion that depends on both the excluded-volume and the narrow confinement. By including both these effects, the equation is able to interpolate between severe confinement (for example, single-file diffusion) and unconfined diffusion. Numerical solutions of both the effective nonlinear diffusion equation and the stochastic particle system are presented and compared. As an application, the case of diffusion under a ratchet potential is considered, and the change in transport properties due to excluded-volume and confinement effects is examined.
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                    Notes
	Note the factors (1+h) in ϕ: this is because ϕ is the total volume of particles divided by the actual volume of the channel, not the volume available to a particle’s center.


	We keep the volume fraction ϕ=Nπϵ/4(h+1) fixed by varying ϵ as h changes.


	For periodic boundary data, J
                                 0 is an extra degree of freedom determined by imposing periodicity.


	To see this, we write (29) in terms of the narrow variables. It becomes \(\mathcal{C}_{\hat{\bf x}_{1}} = \{ \hat{\bf x}_{2} \in\omega{:} \ (\hat{x}_{2} - \hat{x}_{1})^{2} + \epsilon^{2}(\hat{y}_{2} - \hat{y}_{1})^{2} =\epsilon^{2} \}\).
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Appendix: Derivation of the Narrow-Channel Equation (10) for the (NC2) Case
Appendix: Derivation of the Narrow-Channel Equation (10) for the (NC2) Case
This appendix is devoted to the derivation of (10) in the two-dimensional channel (NC2) case. The derivation of the three-dimensional cases (NC3) and (PP) or other (simple) geometries follows similarly (see Sect. A.3 for an outline of the conditions/calculations to be carried out).
1.1 A.1 Transformation \(\mathcal{T}_{1}\): Reduction from the Individual- to the Population-Level
Our starting point is the Fokker–Planck equation for N hard-disc particles (2a), defined in the high-dimensional (configuration) space \(\varOmega_{\epsilon}^{N} \subset\mathbb{R}^{2N}\). Recall that the configuration space has holes that correspond to illegal configurations (with particles’ overlaps) on which the no-flux boundary conditions (2b) hold. The aim of this subsection is to derive the corresponding Fokker–Planck equation for the one-particle density \(p({\bf x}_{1}, t) = \int P(\mathbf{x}, t) \,\mathrm {d}{\bf x}_{2} \cdots\,\mathrm {d}{\bf x}_{N}\), where P(x,t) is the joint probability density of the N particles. We first note that the integration of (2a), (2b) over \({\bf x}_{2}, \dots, {\bf x}_{N}\) results in integrals over contact surfaces on which P must be evaluated (Bruna and Chapman 2012b). When the particle volume is small, the dominant contributions to these contact integrals correspond to two-particle interactions, so that we can set N=2 and then extend the result to N arbitrary in a straightforward manner. However, in contrast with the unconfined case studied in Bruna and Chapman (2012b), under confinement conditions the particle–particle–wall interactions (three-body) are not negligible and must be taken into account. For two particles at positions \({\bf x}_{1}\) and \({\bf x}_{2}\), (2a), (2b) reads 
[image: ]

                    (28a)
                


                              [image: ]

                    (28b)
                

 on \({\bf x}_{i} \in\partial\varOmega\) and \(\|{\bf x}_{1} - {\bf x}_{2}\| = \epsilon\). Here \(\hat{\bf n}_{i} = { {\bf n}}_{i} / \| { {\bf n}}_{i}\|\), where \({ {\bf n}}_{i}\) is the component of the normal vector n corresponding to the ith particle, \(\mathbf{n} = ({\bf n}_{1}, {\bf n}_{2})\). We note that \(\hat{\bf n}_{1} = 0\) on \({\bf x}_{2} \in\partial \varOmega\), and that \(\hat{\bf n}_{1} = -\hat {\bf n }_{2}\) on \(\| {\bf x}_{1}-{\bf x}_{2}\| = \epsilon\).
1.1.1 A.1.1 From N Particles to 1 Particle
We denote by \(\varOmega({\bf x}_{1}) = \varOmega\setminus B_{\epsilon}({\bf x}_{1}) \) the region available to the center of particle 2 when particle 1 is at \({\bf x}_{1}\). Note that when the distance between \({\bf x}_{1}\) and ∂Ω is less than ϵ the area \(|\varOmega({\bf x}_{1})|\) increases (see Fig. 16) because the area \(\mathcal{U}({\bf x}_{1}) = B_{\epsilon}({\bf x}_{1})\cap\varOmega\) excluded by particle 1 changes with \({\bf x}_{1}\). The points on which the two particles are in contact are given by the collision boundary
							                          
$$ \mathcal{C}_{{\bf x}_1} = \bigl\{ {\bf x}_2 \in \varOmega\text{ s.t. } \| {\bf x}_2 - {\bf x}_1\| = \epsilon \bigr\}. $$

                    (29)
                


							                          Fig. 16[image: figure 16]
Sketch of the original channel geometry (solid black lines) and the effective configuration space for the center of a second circular particle, given by the boundary function \(\partial \varOmega({{\bf x}_{1}})\) (dash red lines) which depends on the position of the first particle \({\bf x}_{1}\). The collision boundary function \(\mathcal{C}_{{\bf x}_{1}}\) forms part of the effective boundary \(\partial\varOmega({{\bf x}_{1}})\) (Color figure online)


Full size image


                              Integrating Eq. (28a) over \(\varOmega({\bf x}_{1})\) using the Reynolds transport theorem (on the moving boundary \(\mathcal{C}_{{\bf x}_{1}}\)), the divergence theorem, and the boundary condition (28b) yields 
[image: ]

                    (30)
                

 We denote the collision integral above by \(\mathcal{I}\). If we now consider the case of N particles we would obtain a collision integral for each pair, so that after some particle relabeling the corresponding equation is 
[image: ]

                    (31)
                


                              Equation (31) is halfway through transformation \(\mathcal{T}_{1}\) (cf. Fig. 1), since the first half of the equation depends only on \(\bf x_{1}\) while the integral \(\mathcal{I}\) still depends on the two-particle density P near the collision surface \(\mathcal{C}_{{\bf x}_{1}}\).
At this stage, it is common to use a closure approximation such as \(P({\bf x}_{1},{\bf x}_{2},t) = p({\bf x}_{1},t) p({\bf x}_{2},t)\) to evaluate \(\mathcal{I}\) and obtained a closed equation for p (Rubinstein and Keller 1989). However, the pairwise particle interaction—and, therefore, the correlation between their positions—is exactly localized near the collision surface \(\mathcal{C}_{{\bf x}_{1}}\). Instead, in the next section we will use an alternative method based on matched asymptotic expansions to evaluate \(\mathcal{I}\) systematically (Bruna and Chapman 2012b).
1.1.2 A.1.2 Matched Asymptotic Expansions
We suppose that when two particles are far apart (|x
                                 1−x
                                 2|≫1) they are independent (at leading order), whereas when they are close to each other (|x
                                 1−x
                                 2|∼ϵ) they are correlated. We denote these two regions of the configuration space \(\varOmega_{\epsilon}^{2}\) the outer region and the inner region, respectively. We use the x-coordinate to distinguish between the two regions because the inner region spans the channel’s cross section. Importantly, this implies that the outer region is disconnected.

                      Outer Region

                      In the outer region, we consider the change to the narrow-domain variables (5) and define \(\hat{P}(\hat{\bf x}_{1}, \hat{\bf x}_{2},t) = \epsilon^{2} P ({\bf x}_{1}, {\bf x}_{2}, t)\). This scaling is consistent with that introduced for the one-particle density in Sect. 2.2, and is such that P and \(\hat{P}\) each integrate to one in their respective domains \(\varOmega_{\epsilon}^{2}\) and the narrow-domain variable equivalent \(\omega_{\epsilon}^{2}\). Then (28a) becomes 
[image: ]

                    (32a)
                

 for \((\hat{\bf x}_{1}, \hat{\bf x}_{2}) \in\omega_{\epsilon}^{2}\), with 
[image: ]

                    (32b)
                


                                    [image: ]

                    (32c)
                

 for i=1,2. The boundary condition on the collision line \(\mathcal{C}_{{\bf x}_{1}}\) disappears for \(|\hat{x}_{1} - \hat{x}_{2}| > \epsilon\), so that it is “invisible” to the outer region.Footnote 4
                                 

                      In the outer region, we define \(P_{\mathrm{out}}(\hat{\bf x}_{1}, \hat{\bf x}_{2},t) = \hat{P}(\hat{\bf x}_{1}, \hat{\bf x}_{2},t)\) and look for an asymptotic solution to (32a)–(32c) by expanding P
                                    out in powers of ϵ. We find at leading order that P
                                    out must be independent of the vertical coordinates \(\hat{y}_{1}\) and \(\hat{y}_{2}\). By independence in the outer region, we suppose that the leading-order solution is separable, so that it is of the form \(q(\hat{x}_{1},t) q(\hat{x}_{2},t)\) for some function q. Solving for the next two orders in ϵ, we find that the solution in the outer region is, to \(\mathcal{O}(\epsilon^{2})\), 
[image: ]

                    (33)
                

 where the \(\varUpsilon_{i}(\hat{x}_{1}, \hat{x}_{2}, t)\) are arbitrary functions of integration, determined by solvability conditions at higher order. Note that the invariance of P with respect to a switch of particle labels means that in the outer region both particles have the same density function q. From the solvability condition on the O(ϵ
                                    2) terms above, we obtain the following equation for q: 
$$ \frac{\partial q}{\partial t} (\hat{x}, t) = \frac{\partial}{\partial \hat{x}} \biggl( \frac{\partial q}{\partial\hat{x}} - f_1(\hat{x},0) q \biggr). $$

                    (34)
                


                                 
                    
                      Inner Region

                      In the inner region, we introduce the inner variables
								                            
$$ x_1 = \tilde{x}_1, \qquad y_1= \epsilon\tilde{y}_1,\qquad x_2 = \tilde{x}_1 + \epsilon\tilde{x}, \qquad y_2= \epsilon\tilde{y}_2, $$

                    (35)
                

 and define \(\tilde{P}(\tilde{\bf x}_{1}, \tilde{\bf x}_{2},t) = \epsilon ^{2} P ({\bf x}_{1}, {\bf x}_{2}, t)\). The contact boundary \(\mathcal{C}_{{\bf x}_{1}}\) (29) becomes 
$$ \tilde{\mathcal{C}}_{\tilde{y}_1} = \bigl\{ (\tilde{x}, \tilde{y}_2) \in \mathbb{R} \times[-h/2, h/2] \ \text{ s.t. } \ \tilde{x}^2 + (\tilde{y}_2 - \tilde{y}_1)^2 = 1 \bigr\}, $$

                    (36)
                

 and problem (28a), (28b) is transformed to 
[image: ]

                    (37a)
                

 with 
[image: ]

                    (37b)
                

 on \(\tilde{\mathcal{C}}_{\tilde{y}_{1}}\) and 
[image: ]

                    (37c)
                


                                    [image: ]

                    (37d)
                

 In addition to (37b)–(37d), the inner solution must match with the outer as \(\tilde{x} \to\pm\infty\). Expanding the outer solution in terms of the inner variables, which corresponds to replacing \(\hat{x}_{1} = \tilde{x}_{1}\), \(\hat{y}_{1} = \tilde{y}_{1}\), \(\hat{x}_{2} = \tilde{x}_{1} + \epsilon\tilde{x}\) and \(\hat{y}_{2} = \tilde{y}_{2}\) in (33), and subsequently expanding in powers of ϵ, we obtain the following matching condition: 
[image: ]

                    (37e)
                

 where \(q \equiv q(\tilde{x}_{1}, t)\). Expanding \(\tilde{P}\) in powers of ϵ, \(\tilde{P}\sim\tilde{P}^{(0)} + \epsilon\tilde{P}^{(1)} + \epsilon^{2} \tilde{P}^{(2)} + \cdots \), we find that the leading- and first-order solutions of (37a)–(37e) are 
[image: ]

                    (38)
                


                                    [image: ]

                    (39)
                

 Unlike in the bulk or unconfined problem (Bruna and Chapman 2012a, 2012b), the narrow-channel problem requires computing the second-order inner solution. The solution procedure is rather cumbersome and is omitted here. It involves a further change of variable \(\tilde{x} = \sqrt{2} \tilde{s}\) to turn the problem into a Poisson problem, and solving two sub-problems numerically using the commercial finite-element solver COMSOL Multiphysics 4.3. The second-order solution of (37a)–(37e) is (see Appendix C.1 in Bruna 2012 for full details) 
[image: ]

                    (40)
                

 with \(\tilde{Q}_{i} (\tilde{x}, \tilde{y}_{1}, \tilde{y}_{2}) = \tilde{v}_{i} (\tilde{x}/\sqrt{2} , \tilde{y}_{1}, \tilde{y}_{2})\), where \(\tilde{v}_{1}(\tilde{s}, \tilde{y}_{1}, \tilde{y}_{2})\) and \(\tilde{v}_{2} (\tilde{s}, \tilde{y}_{1}, \tilde{y}_{2})\) are given by (numerical solutions of) 
$$ \begin{array}{l} \widetilde{\boldsymbol{\nabla}}^2 \tilde{v}_1 = 0,\\[4pt] \widetilde{\boldsymbol{\nabla}} \tilde{v}_1 \cdot \tilde{\boldsymbol {\nu}} = \tilde{s}^2 \quad \text{on} \ \tilde{\mathcal{D}}_{\tilde{y}_1}, \\[7pt] \widetilde{\boldsymbol{\nabla}} \tilde{v}_1 \cdot\tilde{ \boldsymbol {\nu}} = 0 \quad \text{on}\ \tilde{y}_i=\pm\dfrac{h}{2}, \\[7pt] \tilde{v}_1 \sim D_1 |\tilde{s}|\quad \text{as}\ \tilde{s} \to\pm \infty, \end{array} $$

                    (41)
                

 and 
$$ \begin{array}{l} \widetilde{\boldsymbol{\nabla}}^2 \tilde{v}_2 = 0, \\[5pt] \widetilde{\boldsymbol{\nabla}} \tilde{v}_2 \cdot \tilde{\boldsymbol {\nu}} = \tilde{s} (\tilde{y}_1 - \tilde{y}_2), \quad \text{on}\ \tilde {\mathcal{D}}_{\tilde{y}_1}, \\[7pt] \widetilde{\boldsymbol{\nabla}} \tilde{v}_2 \cdot\tilde{ \boldsymbol {\nu}} = 0, \quad \text{on}\ \tilde{y}_i=\pm \dfrac{h}{2}, \\[7pt] \tilde{v}_2 \sim0 ,\quad \text{as}\ \tilde{s} \to\pm\infty. \end{array} $$

                    (42)
                

 Here, \(\widetilde{\boldsymbol{\nabla}}\) stands for the gradient operator with respect to the position vector \((\tilde{s}, \tilde{y}_{1}, \tilde{y}_{2})\), \(\tilde{\mathcal{D}}_{\tilde{y}_{1}} \) is the transformed collision boundary \(\tilde{\mathcal{C}}_{\tilde{y}_{1}}\) (36), and \(\tilde{\boldsymbol{\nu}}\) is the outward unit normal on this mapped boundary, \(\tilde{\boldsymbol{\nu}} = - \frac{\sqrt{2}}{2} (2 \tilde{s}, \tilde{y}_{1} - \tilde{y}_{2}, \tilde{y}_{2} - \tilde{y}_{1})\). Finally, the constant field D
                                    1 at infinity for \(\tilde{v}_{1}\) is related to the integration function from the outer ϒ
                                    1, 
$$ D_1 = \frac{\lim_{\hat{x}_2 \to\hat{x}_1} \frac{\partial\varUpsilon _1}{\partial\hat{x}_2} (\hat{x}_1, \hat{x}_2)}{ [ q \frac{\partial ^2 q}{\partial\tilde{x}_1^2} - (\frac{\partial q}{\partial \tilde{x}_1} ) ^2 - \frac{\partial f_1}{\partial x} q^2 ] }. $$

 Out of the derivation we also find that \(\varUpsilon_{1}(\hat{x}_{1}, \hat{x}_{2}) \equiv\varUpsilon_{1}(|\hat{x}_{1}-\hat{x}_{2}|)\) with ϒ
                                    1(x) differentiable satisfying ϒ
                                    1(0)=0. In contrast, the contribution from the other outer function ϒ
                                    2 is left unknown (it could be determined by matching higher order terms), but we are able to ignore it as it has a zero contribution to the collision integral \(\mathcal{I}\) (as we will see in the next section). We note that, in (40), q, f
                                    1 and f
                                    2 are functions of the “outer” variable \(\tilde{x}_{1}\) only, namely, \(q = q(\tilde{x}_{1}, t)\) and \(f_{i} = f_{i}(\tilde{x}_{1}, 0)\).

                      Combining (38), (39), and (40) we have the solution to the inner problem (37a)–(37e) up to \(\mathcal{O}(\epsilon^{2})\).

                    1.1.3 A.1.3 Collision Integral
Now we go back to Eq. (31) and use the asymptotic solution of the previous subsection to turn it into an equation for \(p({\bf x}_{1}, t)\) only thus completing transformation \(\mathcal{T}_{1}\). Note that, since the integral \(\mathcal{I}\) is over the collision boundary \(\mathcal{C}_{{\bf x}_{1}}\), it lives in the inner region and we must use \(\tilde{P}\) to evaluate it.
In terms of the inner variables, \(\mathcal{I}\) is 
[image: ]

                    (43)
                

 where \(\tilde{\mathcal{C}}_{\tilde{y}_{1}}\) is given in (36) and \(\mathrm {d}\tilde{l}\) is the line integral along this curve (for \(\tilde{y}_{1}\) fixed, see Fig. 17). Depending on the channel width h (relative to one, which is the radius of \(\tilde{\mathcal{C}}_{\tilde{y}_{1}}\)), the integration is over the whole circle or a part of it. Introducing the distances \(l_{1} = \max(-h/2-\tilde{y}_{1},-1)\) and \(l_{2} = \min(h/2-\tilde{y}_{1}, 1)\), the angles at contact with the lower and upper channel walls are θ
                                 1=arcsinl
                                 1 and θ
                                 2=arcsinl
                                 2, respectively. (These are equal to ±π/2 for no contact.) 
Fig. 17[image: figure 17]
Domain of integration \(\tilde{\mathcal{C}}_{\tilde{y}_{1}}\) (solid green line), distances l
                                            1 and l
                                            2 between the vertical coordinate of the first particle and the lower and upper channel walls and corresponding angles θ
                                            1 and θ
                                            2 (Color figure online)


Full size image


                              Writing \(\mathcal{I} = \epsilon^{-2} ( \mathcal{I}^{(0)} + \epsilon \mathcal{I}^{(1)} + \epsilon^{2}\mathcal{I}^{(2)} + \cdots )\) and using (43), we find that 
[image: ]

                    (44)
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                    (45)
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                    (46)
                

 where \(f_{i} = f_{i} (\tilde{x}_{1}, 0)\), 
[image: ]

                    (47a)
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                    (47b)
                


                                 [image: ]

                    (47c)
                

 and \(\mathcal{J}\) is the integral operator \(\mathcal{J}[Q](h, \tilde{y}_{1}) = \int_{\tilde{\mathcal{C}}_{\tilde{y}_{1}}} [ Q_{\tilde{y}_{2}} (\tilde{y}_{2}- \tilde{y}_{1}) + Q_{\tilde{x}} \tilde{x} ]\, \mathrm {d}\tilde{l}\). The terms \(\mathcal{J}[\tilde{Q}_{1}]\) and \(\mathcal{J}[\tilde{Q}_{2}]\) are evaluated numerically with COMSOL (see Appendix C.2 in Bruna 2012 for more details).
1.1.4 A.1.4 Population-Level Fokker–Planck Equation
Combining (45) and (46), we obtain the first two terms of the asymptotic expansion for \(\mathcal{I}\), which depends on both the channel width h and the elevation of the first particle \(\tilde{y}_{1}\) but is independent of the position of the second particle. Thus, we can drop the first particle label (the subindex 1) for clarity of notation. Inserting this expansion into (31), we obtain an equation for the first particle 
[image: ]

                    (48)
                

 which involves the marginal density \(p({\bf x},t)\), the outer density \(q(\hat{x},t)\) and the channel width h. This concludes the transformation \(\mathcal{T}_{1}\) from N particles to one particle (see Fig. 1).
1.2 A.2 Transformation \(\mathcal{T}_{2}\): Reduction of the Number of Geometric Dimensions
Following a similar procedure to that for point particles in Sect. 2.2, we will reduce (48) into a one-dimensional effective equation along the axial direction. First, integrating (28b) over \(\varOmega({\bf x})\) for \({\bf x} \in\partial\varOmega\), we obtain the following no-flux boundary condition: 
$$ \bigl[ {\boldsymbol{\nabla}}_{{\bf x}} p- {\bf f}({\bf x}) p \bigr] \cdot\hat { \bf n} = 0 \quad\text{on} \ \partial\varOmega. $$

                    (49)
                

 Analogously to the point-particles case, we use the narrow-domain variables (5) and define \(\hat{p}(\hat{\bf x}, t) = \epsilon p({\bf x}, t)\). With this rescaling, Eqs. (48) and (49) become 
[image: ]

                    (50a)
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                    (50b)
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                    (50c)
                

 where \(f_{i} \equiv f_{i} (\hat{x}, \epsilon\hat{y})\). There is no need to expand the integral terms \(\mathcal{I}^{(i)}\) in terms of the narrow-domain variables since these are written in terms of the inner variables (35), which coincide with the narrow-domain variable for expressions independent of the second particle’s coordinates.
Expanding \(\hat{p}\) in powers of ϵ and solving (50a)–(50c) gives, at leading order, that \(\hat{p}\) is independent of \(\hat{y}\). As before, we introduce the effective one-dimensional densities as \(\hat{p}_{e}^{(i)} = \int_{-h/2} ^{h/2} \hat{p}^{(i)}\, \mathrm {d}\hat{y}\). Thus we have that \(\hat{p}_{e} ^{(0)} \equiv h \hat{p}_{e}^{(0)}\). At the next order, 
[image: ]

                    (51)
                

 For clarity of notation, in the remaining of this section, we write \(f_{i}(\hat{x}, 0) \equiv f_{i}\). Integrating the second order of (50a) over the channel’s cross section and using (50c), gives 
[image: ]

                    (52)
                

 where we have used that \(\int_{-h/2}^{h/2} \mathcal{I}^{(1)}\, \mathrm {d}\hat{y} = 0\) [see Eqs. (45) and (47a)]. Note that this equation coincides with the effective equation for point particles (7). It is at the next order that the finite-size effects appear.
Repeating the same procedure of integrating with respect to \(\hat{y}\) the \(\mathcal{O}(\epsilon^{3})\) of (50a)–(50c) and using (50c) to eliminate \(\hat{p}^{(3)}\) yields the following solvability condition:
						                        
$$ \frac{\partial\hat{p}^{(1)}_e}{\partial t}(\hat{x}, t) -\frac{\partial }{\partial\hat{x}} \biggl( \frac{\partial\hat{p}^{(1)}_e}{\partial \hat{x}} - f_1 \, \hat{p}^{(1)}_e \biggr) = (N-1) \int_{-h/2}^{h/2} \mathcal{I}^{(2)} \, \mathrm {d}\hat{y}. $$

                    (53)
                

 Using (46) and (47a)–(47c), the cross-section integral of \(\mathcal{I}^{(2)}\) is 
[image: ]

                    (54)
                

 where \(M_{1} (h) = \int_{-h/2}^{h/2} \mu_{1}(h, \hat{y})\, \mathrm {d}\hat{y}\) reads 
[image: ]

                    (55)
                

 where Θ(x) is the Heaviside step function, and \(\mathcal{M} [Q](h) = \int_{-h/2}^{h/2} \mathcal{J}[Q](h, \hat{y}) \, \mathrm {d}\hat{y}\). Although \(\tilde{Q}_{1}\) and \(\tilde{Q}_{2}\) are only solved numerically, using information from their respective problems (41) and (42) one can deduce analytical expressions for their integrals \(\mathcal{M}[\tilde{Q}_{i}]\), namely that \(\mathcal{M}[\tilde{Q}_{1}] = - M_{1}(h)/(2 \sqrt{2})\) and \(\mathcal{M}[\tilde{Q}_{2}] = 0\) (see Appendix C.3 in Bruna 2012). Using this, we find that 
[image: ]

                    (56)
                

 Because q is independent of the inner variables (\(\tilde{x}, \tilde{y}_{1}, \tilde{y}_{2}\)), we can write \(q(\tilde{x}_{1}, t) = q_{e} (\hat{x}, t)/h\). Moreover, the normalization condition on \(\hat{P}\) gives that \(q_{e} (\hat{x}, t) = \hat{p}_{e} (\hat{x}, t) + \mathcal{O}(\epsilon)\). Therefore, the right-hand side of (56) becomes \(\frac{ \partial}{ \partial {\hat{x}} } ( \hat{p}_{e} \frac{\partial\hat{p}_{e}}{\partial{\hat{x}} } )/h^{2}\).
Combining (52), (53), and (56) yields 
[image: ]

                    (57)
                

 which coincides with the effective equation (10) for a two-dimensional narrow-channel after writing α
                              
                      h
                    ≡M
                              1(h)/h
                              2; see (11).
1.3 A.3 Outline of Steps for Other Geometries
In this section, we indicate the key steps to derive the effective continuum Fokker–Planck equation (10) for a general geometry, and in particular for the three-dimensional cases (NC3) and (PP) presented in Sect. 2.3. First, we note below relevant definitions that change with the problem dimension d and the number of confined dimensions k (recall that d
                              
                      e
                    =d−k): 
	
                        (i)
                        
                          
                                          Identify the number of confined and effective dimensions: the original position vector is split into two components, \({\bf x}=(\mathbf{x}_{e}, \mathbf{x}_{c})\) (see Table 1). For example, for (NC3) x
                                          
                              e
                            =x and x
                                          
                              c
                            =(y,z), while for (PP) x
                                          
                              e
                            =(x,y) and x
                                          
                              c
                            =z. 
Table 1 Dimension and variables in each of the spaces and subspacesFull size table


                                       
                        
                      
	
                        (ii)
                        
                          
                                          Determine the confinement parameter(s): Next, we must choose an scaling for the confined dimensions relative to the unconfined ones. In all cases considered here, we made that simple by saying that all confined dimensions are of length H relative to the unconfined ones, but there could be of different lengths, too, such as the narrow channel of rectangular cross section mentioned briefly in Sect. 3.3. Suppose that the confinement dimensions are \(\mathbf{H} = (H_{1}, \dots, H_{k}) = \mathcal{O}(\epsilon)\). Then the vector of confinement parameters is given by h=(h
                                          1,…,h
                                          
                              k
                            ), with h
                                          
                              i
                            =H
                                          
                              i
                            /ϵ.

                          Note that we are assuming that a confined dimension is always of order ϵ (the particle’s diameter). However, this could also be generalized and introduce an intermediate scaling (between ϵ and one).

                        
                      
	
                        (iii)
                        
                          
                                          Narrow-domain variables transformation: the generalization of the change of variables (5) is 
$$ \mathbf{x}_e = \hat{\mathbf{x}}_e, \qquad \mathbf{x}_c = \epsilon\hat{\mathbf{x}}_c. $$

 We write \(\hat{\bf x} = (\hat{\mathbf{x}}_{e}, \hat{\mathbf{x}}_{c})\). The one-particle and two-particle densities in the rescaled domain are respectively defined as 
[image: ]

 The original domain Ω is mapped into the rescaled domain ω.

                        
                      
	
                        (iv)
                        
                          
                                          Apply the effective domain transformation: The \(\mathcal{T}_{2}\) transformation to reduce the original d-dimensional problem to a d
                                          
                              e
                            -dimensional problem (cf. Sect. A.2) requires the following rescaled densities 
[image: ]

 where 
$$ \varLambda= \prod_{i=1}^k h_i. $$

                    (58)
                

 This factor is, in fact, equal to the volume of the rescaled domain ω (also |ω|≡|ω
                                          
                              c
                            |). Recall it is introduced so that \(\hat{p}_{e}\) and \(\hat{P}_{e}\) are defined as densities.

                        
                      
	
                        (v)
                        
                          
                                          Evaluate the collision integral
										                                \(\mathcal{I}\)
                                          : The evaluation of the contribution of the two-particle interaction \(\mathcal{I}\) reduces to computing one coefficient like M
                                          1(h) in (57) for each of the unconfined dimensions. Suppose that all the unconfined dimensions are symmetric. In general, it is equal to 
$$ M_1(\mathbf{h}) = \int_{\omega_c} \mu_1(\mathbf{h},\hat {\mathbf{x}}_c) \, \mathrm {d}\hat{\mathbf{x}}_c, $$

                    (59)
                

 where \(\hat{\mathbf{x}}_{c}\) are the confined coordinates of the first particle (it was simply \(\hat{y}\) in the (NC2) [cf. (55)]. The function \(\mu_{1}(\mathbf{h},\hat{\mathbf{x}}_{c})\) is the integral of \(\hat{x}^{2}\) over the contact surface between two particles when the first one has coordinates \((\hat{\mathbf{x}}_{e}, \hat{\mathbf{x}}_{c})\). Without loss of generality, we can set \(\hat{\mathbf{x}}_{e} \equiv\boldsymbol{0}_{e}\). In the rescaled problem, this surface is a d-dimensional unit sphere centered at \((\boldsymbol{0}_{e}, \hat {\mathbf{x}}_{c})\), and (possibly) intersected with the confinement walls ∂ω
                                          
                              c
                            : 
$$ \mu_1(\mathbf{h},\hat{\mathbf{x}}_c) = \int _{B(\hat {\mathbf{x}}_c) \cap\omega_c} x^2 \, \mathrm {d}S, $$

                    (60)
                

 where \(B(\hat{\mathbf{x}}_{c})\) is the unit ball, dS is the surface differential and x is the unconfined dimension of this surface. Once M
                                          1 is computed, we use it for the nonlinear coefficient of the effective Fokker–Planck equation. The generalization of the coefficient α
                                          
                              h
                             in (10) is given by 
$$ \alpha_{\mathbf{h}} = \frac{1}{\varLambda} M_1({\mathbf{h}}). $$

                    (61)
                


                                       
                        
                      


                           

Rights and permissions
Reprints and permissions


About this article
Cite this article
Bruna, M., Chapman, S.J. Diffusion of Finite-Size Particles in Confined Geometries.
                    Bull Math Biol 76, 947–982 (2014). https://doi.org/10.1007/s11538-013-9847-0
Download citation
	Received: 13 December 2012

	Accepted: 22 April 2013

	Published: 10 May 2013

	Issue Date: April 2014

	DOI: https://doi.org/10.1007/s11538-013-9847-0


Share this article
Anyone you share the following link with will be able to read this content:
Get shareable linkSorry, a shareable link is not currently available for this article.


Copy to clipboard

                            Provided by the Springer Nature SharedIt content-sharing initiative
                        


Keywords
	Brownian motion
	Fokker–Planck equation
	Diffusion in confined geometries
	Entropic effects
	Stochastic simulations








                    
                

            

            
                
                    

                    
                        
                            
    

                        

                    

                    
                        
                    


                    
                        
                            
                                
                            

                            
                                
                                    
                                        Access this article


                                        
                                            
                                                
                                                    
                                                        Log in via an institution
                                                        
                                                            
                                                        
                                                    
                                                

                                            
                                        

                                        
                                            
 
 
  
   
    
     
     
      Buy article PDF USD 39.95
     

    

    Price excludes VAT (USA)

     Tax calculation will be finalised during checkout.

    Instant access to the full article PDF.

   

  

  
 

 
  
   
    Rent this article via DeepDyve
     
      
     

   

  

  
 


                                        

                                        
                                            Institutional subscriptions
                                                
                                                    
                                                
                                            

                                        

                                    

                                
                            

                            
                                
    
        Advertisement

        
        

    






                            

                            

                            

                        

                    

                
            

        

    
    
    


    
        
            Search

            
                
                    
                        Search by keyword or author
                        
                            
                            
                                
                                    
                                
                                Search
                            
                        

                    

                
            

        

    



    
        Navigation

        	
                    
                        Find a journal
                    
                
	
                    
                        Publish with us
                    
                
	
                    
                        Track your research
                    
                


    


    
	
		
			
			
	
		
			
			
				Discover content

					Journals A-Z
	Books A-Z


			

			
			
				Publish with us

					Publish your research
	Open access publishing


			

			
			
				Products and services

					Our products
	Librarians
	Societies
	Partners and advertisers


			

			
			
				Our imprints

					Springer
	Nature Portfolio
	BMC
	Palgrave Macmillan
	Apress


			

			
		

	



		
		
		
	
		
				
						
						
							Your privacy choices/Manage cookies
						
					
	
						
							Your US state privacy rights
						
						
					
	
						
							Accessibility statement
						
						
					
	
						
							Terms and conditions
						
						
					
	
						
							Privacy policy
						
						
					
	
						
							Help and support
						
						
					


		
	
	
		
			
				
					
					3.82.145.95
				

				Not affiliated

			

		
	
	
		
			[image: Springer Nature]
		
	
	© 2024 Springer Nature




	






    