Skip to main content
Log in

Analysis and Simulation of Division- and Label-Structured Population Models

A New Tool to Analyze Proliferation Assays

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In most biological studies and processes, cell proliferation and population dynamics play an essential role. Due to this ubiquity, a multitude of mathematical models has been developed to describe these processes. While the simplest models only consider the size of the overall populations, others take division numbers and labeling of the cells into account. In this work, we present a modeling and computational framework for proliferating cell populations undergoing symmetric cell division, which incorporates both the discrete division number and continuous label dynamics. Thus, it allows for the consideration of division number-dependent parameters as well as the direct comparison of the model prediction with labeling experiments, e.g., performed with Carboxyfluorescein succinimidyl ester (CFSE), and can be shown to be a generalization of most existing models used to describe these data. We prove that under mild assumptions the resulting system of coupled partial differential equations (PDEs) can be decomposed into a system of ordinary differential equations (ODEs) and a set of decoupled PDEs, which drastically reduces the computational effort for simulating the model. Furthermore, the PDEs are solved analytically and the ODE system is truncated, which allows for the prediction of the label distribution of complex systems using a low-dimensional system of ODEs. In addition to modeling the label dynamics, we link the label-induced fluorescence to the measure fluorescence which includes autofluorescence. Furthermore, we provide an analytical approximation for the resulting numerically challenging convolution integral. This is illustrated by modeling and simulating a proliferating population with division number-dependent proliferation rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anderson, A. R. A., & Quaranta, V. (2008). Integrative mathematical oncology. Nat. Rev. Cancer, 8(3), 227–234.

    Article  Google Scholar 

  • Avery, S. V. (2006). Microbial cell individuality and the underlying sources of heterogeneity. Nat. Rev., Microbiol., 4, 577–587.

    Article  Google Scholar 

  • Banks, H. T., & Kunsich, K. (1989). Estimation techniques for distributed parameter systems. Boston: Birkhäuser.

    Book  MATH  Google Scholar 

  • Banks, H. T., Suttona, K. L., Thompson, W. C., Bocharov, G., Roose, D., Schenkel, T., & Meyerhans, A. (2010). Estimation of cell proliferation dynamics using CFSE data. Bull. Math. Biol., 73(1), 116–150.

    Article  Google Scholar 

  • Banks, H. T., Sutton, K. L., Thompson, W. C., Bocharov, G., Doumic, M., Schenkel, T., Argilaguet, J., Giest, S., Peligero, C., & Meyerhans, A. (2011). A new model for the estimation of cell proliferation dynamics using CFSE data. J. Immunol. Methods, 373(1–2), 143–160. doi:10.1016/j.jim.2011.08.014.

    Article  Google Scholar 

  • Banks, H. T., Thompson, W. C., Peligero, C., Giest, S., Argilaguet, J., & Meyerhans, A. (2012, in press). A division-dependent compartmental model for computing cell numbers in CFSE-based lymphocyte proliferation assays. Accepted for publication in Math. Biosci. Eng. Preprint available at http://www.ncsu.edu/crsc/reports/ftp/pdf/crsc-tr12-03.pdf.

  • Basse, B., & Wake, G. C. (1997). Predation thresholds for survival of endangered species. Math. Med. Biol., 15(3), 241–250.

    Article  Google Scholar 

  • Beaulieu, N. C. (2004). Highly accurate simple closed-form approximations to lognormal sum distributions and densities. IEEE Commun. Lett., 8(12), 709–711.

    Article  Google Scholar 

  • Bird, J. J., Brown, D. R., Mullen, A. C., Moskowitz, N. H., Mahowald, M. A., Sider, J. R., Gajewski, T. F., Wang, C. R., & Reiner, S. L. (1998). Helper T cell differentiation is controlled by the cell cycle. Immunity, 9(2), 229–237.

    Article  Google Scholar 

  • Buske, P., Galle, J., Barker, N., Aust, G., Clevers, H., & Loeffler, M. (2011). A comprehensive model of the spatio-temporal stem cell and tissue organisation in the intestinal crypt. PLoS Comput. Biol., 7(1), e1001,045. doi:10.1371/journal.pcbi.1001045.

    Article  Google Scholar 

  • De Boer, R. J., Ganusov, V. V., Milutinoviò, D., Hodgkin, P. D., & Perelson, A. S. (2006). Estimating lymphocyte division and death rates from CFSE data. Bull. Math. Biol., 68(5), 1011–1031.

    Article  Google Scholar 

  • Deenick, E. K., Gett, A. V., & Hodgkin, P. D. (2003). Stochastic model of T cell proliferation: a calculus revealing IL-2 regulation of precursor frequencies, cell cycle time, and survival. J. Immunol., 170(10), 4963–4972.

    Google Scholar 

  • Diekmann, O., Gyllenberg, M., Metz, J. A. J., & Thieme, H. R. (1998). On the formulation and analysis of general deterministic structured population models. I. Linear theory. J. Math. Biol., 36(4), 349–388. doi:10.1007/s002850050104.

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann, O., Gyllenberg, M., Huang, H., Kirkilisnis, M., Metz, J. A. J., & Thieme, H. R. (2001). On the formulation and analysis of general deterministic structured population models. II. Nonlinear theory. J. Math. Biol., 43(2), 157–189.

    Article  MathSciNet  MATH  Google Scholar 

  • Diekmann, O., Gyllenberg, M., & Metz, J. A. J. (2003). Steady state analysis of structured population models. Theor. Popul. Biol., 63(4), 309–338.

    Article  MATH  Google Scholar 

  • Diekmann, O., Gyllenberg, M., Metz, J. A. J., Nakaoka, S., & de Roos, A. M. (2010). Daphnia revisited: local stability and bifurcation theory for physiologically structured population models explained by way of an example. J. Math. Biol., 62(2), 277–318.

    Article  Google Scholar 

  • Doumic, M., Perthame, B., & Zubelli, J. P. (2009). Numerical solution of an inverse problem in size-structured population dynamics. Inverse Probl., 25(4), 045,008. doi:10.1088/0266-5611/25/4/045008.

    Article  MathSciNet  Google Scholar 

  • Doumic, M., Maia, P., & Zubelli, J. P. (2010). On the calibration of a size-structured population model from experimental data. Acta Biotheor., 58(4), 405–413. doi:10.1007/s10441-010-9114-9.

    Article  Google Scholar 

  • Eissing, T., Küpfer, L., Becker, C., Block, M., Coboeken, K., Gaub, T., Goerlitz, L., Jäger, J., Loosen, R., Ludewig, B., Meyer, M., Niederalt, C., Sevestre, M., Siegmund, H. U., Solodenko, J., Thelen, K., Telle, U., Weiss, W., Wendl, T., Willmann, S., & Lippert, J. (2011). A computational systems biology software platform for multiscale modeling and simulation: integrating whole-body physiology, disease biology, and molecular reaction networks. Front. Physiol., 2, 4. doi:10.3389/fphys.2011.00004.

    Article  Google Scholar 

  • Evans, L. (1998). Partial differential equations. Providence: Am. Math. Soc.

    MATH  Google Scholar 

  • Fenton, L. F. (1960). The sum of lognormal probability distributions in scatter transmission systems. IRE Trans. Commun. Syst., 8(1), 57–67.

    Article  MathSciNet  Google Scholar 

  • Fredrickson, A. G., Ramkrishna, D., & Tsuchiya, H. M. (1967). Statistics and dynamics of procaryotic cell populations. Math. Biosci., 1(3), 327–374. doi:10.1016/0025-5564(67)90008-9.

    Article  MATH  Google Scholar 

  • Gabriel, P., Garbett, S. P., Tyson, D. R., & Webb, G. F. (2011). The contribution of age structure to cell population responses to targeted therapeutics. arXiv:1112.1590v1 [math.AP].

  • Gewirtz, D. A., Holt, S. E., & Grant, S. (Eds.) (2007). Cancer drug discovery and development. Apoptosis, senescence, and cancer, 2nd edn. Totowa: Humana Press.

    Google Scholar 

  • Glauche, I., Moore, K., Thielecke, L., Horn, K., Loeffler, M., & Roeder, I. (2009). Stem cell proliferation and quiescence—Two sides of the same coin. PLoS Comput. Biol., 5(7), e1000,447.

    Article  MathSciNet  Google Scholar 

  • Glauche, I., Thielecke, L., & Roeder, I. (2011). Cellular aging leads to functional heterogeneity of hematopoietic stem cells: a modeling perspective. Aging Cell, 10, 457–465.

    Article  Google Scholar 

  • Gratzner, H. G. (1982). Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: a new reagent for detection of DNA replication. Science, 218(4571), 474–475.

    Article  Google Scholar 

  • Grinstead, C. M., & Snell, J. L. (1997). Introduction to probability. Providence: Am. Math. Soc.

    MATH  Google Scholar 

  • Gyllenberg, M. (1986). The size and scar distributions of the yeast Saccharomyces cervisiae. J. Math. Biol., 24(1), 81–101.

    Article  MathSciNet  MATH  Google Scholar 

  • Gyllenberg, M., Osipov, A., & Päivärinta, L. (2002). The inverse problem of linear age-structured population dynamics. J. Evol. Equ., 2(2), 223–239. doi:10.1007/s00028-002-8087-9.

    Article  MathSciNet  MATH  Google Scholar 

  • Hasenauer, J. (2012, under consideration). Modeling and parameter estimation for heterogeneous cell populations. Ph.D. thesis, University of Stuttgart.

  • Hasenauer, J., Waldherr, S., Doszczak, M., Radde, N., Scheurich, P., & Allgöwer, F. (2011a). Analysis of heterogeneous cell populations: a density-based modeling and identification framework. J. Process Control, 21(10), 1417–1425. doi:10.1016/j.jprocont.2011.06.020.

    Article  Google Scholar 

  • Hasenauer, J., Waldherr, S., Doszczak, M., Radde, N., Scheurich, P., & Allgöwer, F. (2011b). Identification of models of heterogeneous cell populations from population snapshot data. BMC Bioinform., 12, 125. doi:10.1186/1471-2105-12-125.

    Article  Google Scholar 

  • Hasenauer, J., Löhning, M., Khammash, M., & Allgöwer, F. (2012a). Dynamical optimization using reduced order models: a method to guarantee performance. J. Process Control. doi:10.1016/j.jprocont.2012.01.017.

    Google Scholar 

  • Hasenauer, J., Schittler, D., & Allgöwer, F. (2012b). A computational model for proliferation dynamics of division- and label-structured populations (Technical report). arXiv:1202.4923v1 [q-bio.PE].

  • Hawkins, E. D., Hommel, M., Turner, M. L., Battye, F. L., Markham, J. F., & Hodgkin, P. D. (2007). Measuring lymphocyte proliferation, survival and differentiation using CFSE time-series data. Nat. Protoc., 2(9), 2057–2067. doi:10.1038/nprot.2007.297.

    Article  Google Scholar 

  • Hayflick, L. (1965). The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res., 37(3), 614–636. doi:10.1016/0014-4827(65)90211-9.

    Article  Google Scholar 

  • Hayflick, L. (1979). Progress in cytogerontology. Mech. Ageing Dev., 9(5–6), 393–408. doi:10.1016/0047-6374(79)90081-2.

    Article  Google Scholar 

  • Hilfinger, A., & Paulsson, J. (2011). Separating intrinsic from extrinsic fluctuations in dynamic biological systems. Proc. Natl. Acad. Sci. USA, 109(29), 12,167–12,172.

    Google Scholar 

  • Hodgkin, P. D., Lee, J. H., & Lyons, A. B. (1996). B cell differentiation and isotype switching is related to division cycle number. J. Exp. Med., 184(1), 277–281.

    Article  Google Scholar 

  • Kassem, M., Ankersen, L., Eriksen, E., Clark, B., & Rattan, S. (1997). Demonstration of cellular aging and senescence in serially passaged long-term cultures of human trabecular osteoblasts. Osteoporos. Int., 7(6), 514–524.

    Article  Google Scholar 

  • Kieffer, M., & Walter, E. (2011). Guaranteed estimation of the parameters of nonlinear continuous-time models: contributions of interval analysis. Int. J. Adapt. Control Signal Process., 25(3), 191–207. doi:10.1002/acs.1194.

    Article  MathSciNet  MATH  Google Scholar 

  • Knopp, K. (1964). Theorie und Anwendung der unendlichen Reihen. Berlin: Springer.

    MATH  Google Scholar 

  • Lampariello, F., & Aiello, A. (1998). Complete mathematical modeling method for the analysis of immunofluorescence distributions composed of negative and weakly positive cells. Cytometry, 32(3), 241–254.

    Article  Google Scholar 

  • Lee, H. Y., & Perelson, A. S. (2008). Modeling T cell proliferation and death in vitro based on labeling data: generalizations of the Smith-Martin cell cycle model. Bull. Math. Biol., 70(1), 21–44. doi:10.1007/s11538-007-9239-4.

    Article  MathSciNet  MATH  Google Scholar 

  • León, K., Faro, J., & Carneiro, J. (2004). A general mathematical framework to model generation structure in a population of asynchronously dividing cells. J. Theor. Biol., 229(4), 455–476. doi:10.1016/j.jtbi.2004.04.011.

    Article  Google Scholar 

  • Luzyanina, T., Mrusek, S., Edwards, J., Roose, D., Ehl, S., & Bocharov, G. (2007a). Computational analysis of CFSE proliferation assay. J. Math. Biol., 54(1), 57–89. doi:10.1007/s00285-006-0046-6.

    Article  MathSciNet  MATH  Google Scholar 

  • Luzyanina, T., Roose, D., Schenkel, T., Sester, M., Ehl, S., Meyerhans, A., & Bocharov, G. (2007b). Numerical modelling of label-structured cell population growth using CFSE distribution data. Theor. Biol. Med. Model., 4, 26. doi:10.1186/1742-4682-4-26.

    Article  Google Scholar 

  • Luzyanina, T., Roose, D., & Bocharov, G. (2009). Distributed parameter identification for label-structured cell population dynamics model using CFSE histogram time-series data. J. Math. Biol., 59(5), 581–603.

    Article  MathSciNet  MATH  Google Scholar 

  • Lyons, A., & Parish, C. (1994). Determination of lymphocyte division by flow cytometry. J. Immunol. Methods, 171(1), 131–137.

    Article  Google Scholar 

  • Marciniak-Czochra, A., Stiehl, T., Ho, A. D., Jäger, W., & Wagner, W. (2009). Modeling of asymmetric cell division in hematopoietic stem cells—regulation of self-renewal is essential for efficient repopulation. Stem Cells Dev., 18(3), 377–385. doi:10.1089/scd.2008.0143.

    Article  Google Scholar 

  • Matera, G., Lupi, M., & Ubezio, P. (2004). Heterogeneous cell response to topotecan in a CFSE-based proliferation test. Cytometry A, 62(2), 118–128. doi:10.1002/cyto.a.20097.

    Article  Google Scholar 

  • Metzger, P., Hasenauer, J., & Allgöwer, F. (2012). Modeling and analysis of division-, age-, and label-structured cell populations. In A. Larjo, S. Schober, M. Farhan, M. Bossert, & O. Yli-Harja (Eds.), Proc. of 9th international workshop on computational systems biology (pp. 60–63). Ulm: Tampere International Center for Signal Processing.

    Google Scholar 

  • Müller, M. (1927). Über das Fundamentaltheorem in der Theorie der gewöhnlichen Differentialgleichungen. Math. Z., 26, 619–645.

    Article  MathSciNet  MATH  Google Scholar 

  • Nordon, R. E., Nakamura, M., Ramirez, C., & Odell, R. (1999). Analysis of growth kinetics by division tracking. Immunol. Cell Biol., 77(6), 523–529. doi:10.1046/j.1440-1711.1999.00869.x.

    Article  Google Scholar 

  • Oldfield, D. G. (1966). A continuity equation for cell populations. Bull. Math. Biol., 28(4), 545–554. doi:10.1007/BF02476861.

    MATH  Google Scholar 

  • Overton, W. R. (1988). Modified histogram subtraction technique for analysis of flow cytometry data. Cytometry, 9(6), 619–626. doi:10.1002/cyto.990090617.

    Article  Google Scholar 

  • Revy, P., Sospedra, M., Barbour, B., & Trautmann, A. (2001). Functional antigen-independent synapses formed between T cells and dendritic cells. Nat. Immunol., 2(10), 925–931. doi:10.1038/ni713.

    Article  Google Scholar 

  • Schittler, D., Hasenauer, J., & Allgöwer, F. (2011). A generalized population model for cell proliferation: Integrating division numbers and label dynamics. In H. Koeppl, J. Aćimović, J. Kesselin, & T. Mäki-Marttunen (Eds.), TICSP series: Vol. 57. Proc. of 8th international workshop on computational systems biology (pp. 165–168), ISBN 978-952-15-2592-6. Zürich: Tampere International Center for Signal Processing.

    Google Scholar 

  • Schittler, D., Hasenauer, J., & Allgöwer, F. (2012). A model for proliferating cell populations that accounts for cell types. In A. Larjo, S. Schober, M. Farhan, M. Bossert, & O. Yli-Harja (Eds.), TICSP series: Vol. 61. Proc. of 9th international workshop on computational systems biology (pp. 84–87). Ulm: Tampere International Center for Signal Processing.

    Google Scholar 

  • Shcheprova, Z., Baldi, S., Frei, S. B., Gonnet, G., & Barral, Y. (2008). A mechanism for asymmetric segregation of age during yeast budding. Nature, 454(7205), 728–734. doi:10.1038/nature07212.

    Google Scholar 

  • Silverman, B. W. (1986). Monographs on statistics and applied probability. Density estimation for statistics and data analysis. London: Chapman and Hall.

    MATH  Google Scholar 

  • Sinko, J., & Streifer, W. (1967). A new model for age-size structure of a population. Ecology, 48(6), 910–918.

    Article  Google Scholar 

  • Smith, J. A., & Martin, L. (1973). Do cells cycle? Proc. Natl. Acad. Sci. USA, 70(4), 1263–1267.

    Article  Google Scholar 

  • Stiehl, T., & Marciniak-Czochra, A. (2011). Characterization of stem cells using mathematical models of multistage cell lineages. Math. Comput. Model., 53(7–8), 1505–1517. doi:10.1016/j.mcm.2010.03.057.

    Article  MathSciNet  MATH  Google Scholar 

  • Thompson, W. C. (2012). Partial differential equation modeling of flow cytometry data from CFSE-based proliferation assays. Ph.d. thesis, North Carolina State University. http://www.lib.ncsu.edu/resolver/1840.16/7434.

  • Trucco, E. (1965). Mathematical models for cellular systems the von Foerster equation. Part I. Bull. Math. Biol., 27(3), 285–304. doi:10.1007/BF02478406.

    Google Scholar 

  • Tsuchiya, H. M., Fredrickson, A. G., & Aris, R. (1966). Dynamics of microbial cell populations. Adv. Chem. Eng., 6, 125–206.

    Article  Google Scholar 

  • von Foerster, H. (1959). Some remarks on changing populations. In J. F. Stohlman (Ed.), The kinetics of cellular proliferation (pp. 382–407). New York: Grune and Stratton.

    Google Scholar 

  • Yates, A., Chan, C., Strid, J., Moon, S., Callard, R., George, S. J. T., & Stark, J. (2007). Reconstruction of cell population dynamics using CFSE. BMC Bioinform., 8, 196. doi:10.1186/1471-2105-8-196.

    Article  Google Scholar 

  • Zwietering, M. H., Jongenburger, I., Rombouts, F. M., & van’t Riet, K. (1990). Modeling of the bacterial growth curve. Appl. Environ. Microbiol., 56(6), 1875–1881.

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support from the German Research Foundation (DFG) within the Cluster of Excellence in Simulation Technology (EXC 310/1) at the University of Stuttgart, from the German Federal Ministry of Education and Research (BMBF) within the SysTec program (grant nr. 0315-506A), and from the MathWorks Foundation of Science and Engineering. We are grateful to C. Breindl and P. Metzger for interesting discussions and proof reading of the manuscript. Furthermore, we thank the reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hasenauer.

Appendices

Appendix A: Proof of Analytical Solution of PDE (15)

To determine the solution of the PDE (15), the method of characteristics (Evans 1998) is employed, which is possible as (15) is linear. The characteristics of (15) are defined by the ODEs

(59)

with x(0)=x 0, t(0)=0, and p i (x 0)=γ i p 0(γ i x 0). This system of ODEs has the solution

(60)

By substitution, we obtain

$$ \begin{aligned} p(x|i,t) &= \gamma^i e^{\int_0^t k(\tau) \,d\tau} p_{0}\bigl(\gamma^i e^{\int_0^t k(\tau) \,d \tau}x\bigr) \end{aligned} $$
(61)

as solution for (15).

Appendix B: Proof of Lemma 1: Solution of ODE System

In this section, we prove by mathematical induction that the ODE system

(62)

with initial conditions N(0|0)=N 0 and ∀i≥1: N(i|0)=0, has for \(\hat{\alpha},\check{\alpha} \geq 0\) and β>0 the solution:

(63)

Thereby, (62) is a generalization of (25).

It is trivial to verify that N(0|t) and N(1|t) are the solutions of (62) for i=0 and i=1, respectively. Hence, only the problem of proving that N(k+1|t) is the solution of (74) for i=k+1 given N(k|t) remains. To show this, note that

(64)

in which \(\mathcal{N}(i|s)\) is the Laplace transform of N(i|t). Given this

(65)

Substitution of \(\mathcal{N}(k|s)\) now yields,

(66)

which by applying the inverse Laplace transformation concludes the mathematical induction and proves Lemma 1.

Remark 6

Note that for \(\check{\alpha} = \hat{\alpha} = \alpha\), (63) simplifies to (25). While for \(\hat{\alpha} = \alpha_{\sup}\), \(\check{\alpha} = \alpha_{\inf}\), β=β inf, N(i|t)=B(i|t), and N 0=B 0, we obtain the bounding system (74) and its solution.

Appendix C: Proof of Lemma 2: Solution of ODE System

In this section, we prove that if

  • i: α i (t)=α i and β i (t)=β i and

  • i,j∈ℕ0,ij: α i +β i α j +β j

the solution of (14) is (26).

It is not difficult to verify that N(0|t) and N(1|t) are the solutions of (14) for i=0 and i=1, respectively. Hence, only the problem of proving that N(k+1|t) is the solution of (74) for i=k+1 given N(k|t) remains. To show this, note that for

(67)

in which \(\mathcal{N}(i|s)\) is the Laplace transform of N(i|t). The proof of this relation is provided in Appendix D.

Given (67) it follows that

(68)

Substitution of \(\mathcal{N}(k|s)\) now yields

(69)

which by applying the inverse Laplace transformation concludes the mathematical induction and proves (63).

Appendix D: Derivation of Laplace Transform \(\mathcal{N}(i|s)\)

To derive \(\mathcal{N}(i|s)\) defined in (67), we study the partial fraction of

(70)

As under the prerequisite ∀i,j∈ℕ0 with ij: α i +β i α j +β j all poles are distinct, the partial fraction can be written as

(71)

To determine the coefficients c k , we consider the equality constraint

(72)

As this equality constraint has to hold for all s, it must be satisfied for s=−(α k +β k ), yielding

$$ c_k = \Biggl( \prod_{\substack{j=1\\j\neq k}}^i \bigl((\alpha_j + \beta_j) - (\alpha_k + \beta_k)\bigr) \Biggr)^{-1}. $$
(73)

Given the values for c k one can easily verify (67) by plugging in the c k ’s into (71). Obviously, the proposed procedure can also be inverted, which concludes the derivation of (67).

Appendix E: Proof of Theorem 2: Convergence

To prove Theorem 2, the comparison theorem for series (Knopp 1964) is applied. Therefore, we define the bounding system

(74)

with initial conditions

and α inf, α sup, and β inf as in Theorem 2. Due to the simple structure of (74), we can compute the analytical solution

(75)

whose derivation can be found in Appendix B.

The bounding system (74) is obtained from (14) by reducing the outflows out of and increasing the inflows into the individual subpopulations. Intuitively, as the initial conditions of (74) and (14) are identical and the right hand side of (74) is for every t∈[0,T] greater or equal than the right-hand side of (14), it follows that B i is an upper bound for N i ,

(76)

This can be proven rigorously by applying Müller’s theorem (Müller 1927), as shown in Kieffer and Walter (2011) for another system.

Given (75) and (76) one can prove the convergence of \(\sum_{i\in\mathbb{N}_{0}} n(x,i|t)\). To take into account that a distributed process is considered (x≥0), we study the maximum over x and define

$$ B_i(t) := B(i|t) \gamma^i e^{kt} p^{\sup}_{0} = \frac{(2 \alpha_{\sup} \gamma)^i}{i!} t^i e^{-(\alpha_{\inf}+\beta_{\inf})t} e^{kt} n^{\sup}_{0} $$
(77)

with \(p^{\sup}_{0} := \sup_{x \in \mathbb {R}_{+}} p_{0}(x) \) and \(n^{\sup}_{0} := N_{0} p^{\sup}_{0}\). Thus, B i (t) is a point-wise upper bound of n(x,i|t). For this definition of B i (t) it holds that

  1. (i)

    i,t,x≥0: 0≤N i (t,x)≤B i (t) ∀i, and

  2. (ii)

    the series

    $$ \begin{aligned} \sum_{i=0}^{\infty} B_i(t) &= \Biggl(\sum_{i=0}^{\infty} \frac{(2 \alpha_{\sup} \gamma t)^i}{i!} \Biggr) e^{-(\alpha_{\inf}+\beta_{\inf})t} e^{kt} n^{\sup}_{0} \end{aligned} $$
    (78)

    is convergent for every finite t.

The latter one holds true as the series is simply the Taylor expansion of the exponential \(e^{2 \alpha_{\sup} \gamma t}\). Under conditions (i) and (ii), it follows from the comparison theorem for series (Knopp 1964) that the series \(\sum_{i\in\mathbb{N}_{0}} N(i|t)\) is convergent in i for every t∈[0,T] and for every x≥0. This concludes the proof.

Appendix F: Proof of Theorem 3: Truncation Error

To prove Theorem 3, note that

(79)

in which the individual lines follow from the approximation methods (27), the fact that all quantities are positive, and the definition of the normalized label intensity (15) which has unity integral for all times T≥0. The remaining term in the following is successively upper bounded, for which we employ the bounding system (74). As shown in Appendix E, it holds that N(i|t)≤B(i|t) which yields

$$ \begin{aligned} \sum_{i = S}^\infty N(i|T) \leq \sum_{i = S}^\infty B(i|T) = \sum _{i = S}^\infty \frac{(2 \alpha_{\sup}T)^i}{i!} e^{-(\alpha_{\inf}+\beta_{\inf})T} N_{0}. \end{aligned} $$
(80)

By completion of the sum, this can be written as

$$ \begin{aligned} \sum_{i = S}^\infty N(i|T) & \leq \Biggl( e^{2 \alpha_{\sup} T} - \sum_{i = 0}^{S-1} \frac{(2 \alpha_{\sup}T)^i}{i!} \Biggr) e^{-(\alpha_{\inf}+\beta_{\inf})T} N_{0}. \end{aligned} $$
(81)

Thus, by exploiting that ∥n(x|0)∥1=N 0, one obtains (29), which concludes the proof.

Appendix G: Proof that the Solution of LSP Can Be Constructed from DLSP

To prove that the DLSP provides the solution to the LSP, n LSP(x|t)=n(x|t), we show that \(n(x|t) = \sum_{i \in \mathbb{N}_{0}} N(i|t) p(x|i,t)\) solves (35). Therefore, n(x|t) is inserted in the left-hand side (∗) of (35), yielding

In here, dN(i|t)/dt is substituted with (14), resulting in

This is equivalent to the result if n(x|t) is inserted in the right-hand side (∗) of (35). Hence, \(n(x|t) = \sum_{i \in \mathbb{N}_{0}} N(i|t) p(x|i,t)\) fulfills (35), which concludes the proof.

Appendix H: Proof that the PDE (15) Conserves Log-normal Distributions

To prove that the PDE (15) conserves log-normal distributions, we use its analytical solution (24) and consider \(p_{0}(x) = \log\mathcal{N}(x|\mu_{0},\sigma_{0}^{2})\). This yields the solution

(82)

Employing the definition of the log-normal distribution, this equation becomes

(83)
(84)

for x>0, which can be restated as

(85)

in which \(\mu_{i}(t) = - i \log \gamma - \int_{0}^{t} k(\tau)\, d \tau + \mu_{0}\). As this equation also holds for x≤0, it follows that the log-normal distribution is conserved and merely the parameter μ is time-dependent. Employing the superposition principle, this statement can be directly extended for sums of log-normal distributions, which concludes the proof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasenauer, J., Schittler, D. & Allgöwer, F. Analysis and Simulation of Division- and Label-Structured Population Models. Bull Math Biol 74, 2692–2732 (2012). https://doi.org/10.1007/s11538-012-9774-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9774-5

Keywords

Navigation