Skip to main content

Advertisement

Log in

Symmetry Breaking in a Model of Antigenic Variation with Immune Delay

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Effects of immune delay on symmetric dynamics are investigated within a model of antigenic variation in malaria. Using isotypic decomposition of the phase space, stability problem is reduced to the analysis of a cubic transcendental equation for the eigenvalues. This allows one to identify periodic solutions with different symmetries arising at a Hopf bifurcation. In the case of small immune delay, the boundary of the Hopf bifurcation is found in a closed form in terms of system parameters. For arbitrary values of the time delay, general expressions for the critical time delay are found, which indicate bifurcation to an odd or even periodic solution. Numerical simulations of the full system are performed to illustrate different types of dynamical behaviour. The results of this analysis are quite generic and can be used to study within-host dynamics of many infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams, B., & Sasaki, A. (2009). Antigenic diversity and cross-immunity, invasibility and coexistence of pathogen strains in an epidemiological model with discrete antigenic space. Theor. Popul. Biol., 76, 157–167.

    Article  MATH  Google Scholar 

  • Agur, Z., Abiri, D., & Van der Ploeg, L. H. (1989). Ordered appearance of antigenic variants of African tryponosomes explained in a mathematical model based on a stochastic switch process and immune-selection against putative switch intermediates. Proc. Natl. Acad. Sci. USA, 86, 9626–9630.

    Article  Google Scholar 

  • Antia, R., Nowak, M. A., & Anderson, R. M. (1996). Antigenic variation and the within-host dynamics of parasites. Proc. Natl. Acad. Sci. USA, 93, 985–989.

    Article  Google Scholar 

  • Arino, J., & van den Driessche, P. (2006). Time delays in epidemic models: modeling and numerical considerations. In O. Arino, M. L. Hbid, & E. Ait Dads (Eds.), Delay differential equations and applications (pp. 539–578). Berlin: Springer.

    Chapter  Google Scholar 

  • Aronson, D. G., Golubitsky, M., & Mallet-Paret, J. (1991). Ponies on a merry-go-round in large arrays of Josephson junctions. Nonlinearity, 4, 903–910.

    Article  MathSciNet  MATH  Google Scholar 

  • Ashwin, P., King, G. P., & Swift, J. W. (1990). Three identical oscillators with symmetric coupling. Nonlinearity, 3, 585–601.

    Article  MathSciNet  MATH  Google Scholar 

  • Blyuss, K. B. (2012). The effects of symmetry on the dynamics of antigenic variation. J. Math. Biol., available online: doi:10.1007/s00285-012-0508-y

    Google Scholar 

  • Blyuss, K. B., & Kyrychko, Y. N. (2010). Stability and bifurcations in an epidemic model with varying immunity period. Bull. Math. Biol., 72, 490–505.

    Article  MathSciNet  MATH  Google Scholar 

  • Blyuss, K. B., & Gupta, S. (2009). Stability and bifurcations in a model of antigenic variation in malaria. J. Math. Biol., 58, 923–937.

    Article  MathSciNet  MATH  Google Scholar 

  • Borst, P., Bitter, W., McCulloch, R., Leeuwen, F. V., & Rudenko, G. (1995). Antigenic variation in malaria. Cell, 82, 1–4.

    Article  Google Scholar 

  • Bungay, S. D., & Campbell, S. A. (2007). Patterns of oscillation in a ring of identical cells with delayed coupling. Int. J. Bifurc. Chaos, 17, 3109–3125.

    Article  MathSciNet  MATH  Google Scholar 

  • Buono, P.-L., & Golubitsky, M. (2001). Models of central pattern generators for quadruped locomotion I. Primary gaits. J. Math. Biol., 42, 291–326.

    Article  MathSciNet  MATH  Google Scholar 

  • Burić, N., Mudrinic, M., & Vasović, N. (2001). Time delay in a basic model of the immune response. Chaos Solitons Fractals, 12, 483–4489.

    Article  MATH  Google Scholar 

  • Cai, J. (2005). Hopf bifurcation in the IS-LM business cycle model with time delay. Electr. J. Differ. Equ., 2005, 1–6.

    Google Scholar 

  • Campbell, S. A., Yuan, Y., & Bungay, S. D. (2005). Equivariant Hopf bifurcation in a ring of identical cells with delayed coupling. Nonlinearity, 18, 2827–2846.

    Article  MathSciNet  MATH  Google Scholar 

  • Craig, A., & Scherf, A. (2003). Antigenic variation. New York: Academic Press.

    Google Scholar 

  • De Leenheer, P., & Pilyugin, S. S. (2008). Immune response to a malaria infection: properties of a mathematical model. J. Biol. Dyn., 2, 102–120.

    Article  MathSciNet  MATH  Google Scholar 

  • Dellnitz, M., & Melbourne, I. (1994). Generic movement of eigenvalues for equivariant self-adjoint matrices. J. Comput. Appl. Math., 55, 249–259.

    Article  MathSciNet  MATH  Google Scholar 

  • Fan, D., & Wei, J. (2009). Equivariant Hopf bifurcation in a ring of identical cells with delay. Math. Probl. Eng., 2009, 950251.

    MathSciNet  Google Scholar 

  • Frank, S. A., & Barbour, A. G. (2006). Within-host dynamics of antigenic variation. Infect. Gene Evol., 6, 141–146.

    Article  Google Scholar 

  • Gardner, M. J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R. W., et al. (2002). Genome sequence of the human malaria parasite plasmodium falciparum. Nature, 419, 498–511.

    Article  Google Scholar 

  • Golubitsky, M., Shiau, L. J., & Stewart, I. (2007). Spatiotemporal symmetries in the disynaptic canal-neck projection. SIAM J. Appl. Math., 67, 1396–1417.

    Article  MathSciNet  MATH  Google Scholar 

  • Golubitsky, M., & Stewart, I. (1986). Hopf bifurcation with dihedral group symmetry: coupled nonlinear oscillators. In M. Golubitsky & J. Guckenheimer (Eds.), Multiparameter bifurcation theory (pp. 131–173). Providence: American Mathematical Society.

    Chapter  Google Scholar 

  • Golubitsky, M., Stewart, I., & Schaeffer, D. (1988). Singularities and groups in bifurcation theory: Vol. II. New York: Springer.

    Book  MATH  Google Scholar 

  • Golubitsky, M., & Stewart, I. (2002). The symmetry perspective: from equilibrium to chaos in phase space and physical space. Basel: Birkhäuser.

    MATH  Google Scholar 

  • Guo, S., & Huang, L. (2003). Hopf bifurcating periodic orbits in a ring of neurons with delays. Physica D, 183, 19–44.

    Article  MathSciNet  MATH  Google Scholar 

  • Gupta, S. (2005). Parasite immune escape: new views into host-parasite interactions. Curr. Opin. Microbiol., 8, 428–433.

    Article  Google Scholar 

  • Hale, J. K., Infante, E. F., & Tsen, F.-S. P. (1985). Stability in linear delay equations. J. Math. Anal. Appl., 105, 533–555.

    Article  MathSciNet  MATH  Google Scholar 

  • Krawcewicz, W., Vivi, P., & Wu, J. (1997). Computation formulae of an equivariant degree with applications to symmetric bifurcations. Nonlinear Stud., 4, 89–119.

    MathSciNet  MATH  Google Scholar 

  • Krawcewicz, W., Vivi, P., & Wu, J. (1998). Hopf bifurcations of functional differential equations with dihedral symmetries. J. Differ. Equ., 146, 157–184.

    Article  MathSciNet  MATH  Google Scholar 

  • Krawcewicz, W., & Wu, J. (1999). Theory and applications of Hopf bifurcations in symmetric functional differential equations. Nonlinear Anal., 35, 845–870.

    Article  MathSciNet  MATH  Google Scholar 

  • Kyrychko, Y. N., Blyuss, K. B., & Schöll, E. (2011). Amplitude death in systems of coupled oscillators with distributed-delay coupling. Eur. Phys. J. B, 84, 307–315.

    Article  Google Scholar 

  • Lloyd, A. L. (2001). Realistic distributions of infectious periods in epidemic models: changing patterns of persistence and dynamics. Theor. Popul. Biol., 60, 59–71.

    Article  Google Scholar 

  • Lythgoe, K. A., Morrison, L. J., Read, A. F., & Barry, J. D. (2007). Parasite-intrinsic factors can explain ordered progression of trypanosome antigenic variation. Proc. Natl. Acad. Sci. USA, 104, 8095–8100.

    Article  Google Scholar 

  • Marchuk, G. I. (2010). Mathematical modelling of immune response in infectious disease. Amsterdam: Kluwer Academic.

    Google Scholar 

  • Mayer, H., Zaenker, K. S., & van der Heiden, U. (1995). A basic mathematical model of the immune response. Chaos, 5, 155–161.

    Article  Google Scholar 

  • McKenzie, F. E., & Bossert, W. H. (1997). The dynamics of Plasmodium falciparum blood-stage infection. J. Theor. Biol., 188, 127–140.

    Article  Google Scholar 

  • Mitchell, J. L., & Carr, T. W. (2010). Oscillations in an intra-host model of Plasmodium falciparum malaria due to cross-reactive immune response. Bull. Math. Biol., 72, 590–610.

    Article  MathSciNet  MATH  Google Scholar 

  • Mitchell, J. L., & Carr, T. W. (2012). Synchronous versus asynchronous oscillations for antigenically varying Plasmodium falciparum with host immune response. J. Biol. Dyn., 6, 333–357. doi:10.1080/17513758.2011.582169

    Article  Google Scholar 

  • Muñoz-Jordán, J. L., Davies, K. P., & Cross, G. A. M. (1996). Stable expression of mosaic coats of variant surface glycoproteins in Trypanosoma brucei. Science, 272, 1795–1797.

    Article  Google Scholar 

  • Newbold, C. (1999). Antigenic variation in Plasmodium falciparum: mechanisms and consequences. Curr. Opin. Microbiol., 2, 420–425.

    Article  Google Scholar 

  • Pecora, L. M. (1998). Synchronization conditions and desynchronizing patterns in coupled limit-cycle and chaotic systems. Phys. Rev. E, 58, 347–360.

    Article  MathSciNet  Google Scholar 

  • Pinto, C. A., & Golubitsky, M. (2006). Central pattern generators for bipedal locomotion. J. Math. Biol., 53, 474–489.

    Article  MathSciNet  MATH  Google Scholar 

  • Recker, M., Nee, S., Bull, P. C., Linyanjui, S., Marsh, K., Newbold, C., & Gupta, S. (2004). Transient cross-reactive immune responses can orchestrate antigenic variation in malaria. Nature, 429, 555–558.

    Article  Google Scholar 

  • Recker, M., & Gupta, S. (2005). A model for pathogen population structure with cross-protection depending on the extent of overlap in antigenic variant repertoires. J. Theor. Biol., 232, 363–373.

    Article  MathSciNet  Google Scholar 

  • Recker, M., & Gupta, S. (2006). Conflicting immune responses can prolong the length of infection in Plasmodium falciparum malaria. Bull. Math. Biol., 68, 1641–1664.

    Article  MathSciNet  Google Scholar 

  • Ruan, S., & Wei, J. (2001a). On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testosterone secretion. IMA J. Math. Appl. Med. Biol., 18, 41–52.

    Article  MATH  Google Scholar 

  • Ruan, S., & Wei, J. (2001b). On the zeros of transcendental functions with applications to stability of delay differential equations with two delays. Dyn. Contin. Discrete Impuls. Syst., Ser. A, 10, 863–874.

    MathSciNet  Google Scholar 

  • Song, Y., Han, M., & Wei, J. (2005). Stability and Hopf bifurcation analysis on a simplified BAM neural network with delays. Physica D, 200, 185–204.

    Article  MathSciNet  MATH  Google Scholar 

  • Stewart, I. (2003). Speciation: a case study in symmetric bifurcation theory. Univ. Iagell. Acta Math., 41, 67–88.

    Google Scholar 

  • Stockdale, C., Swiderski, M. R., Barry, J. D., & McCulloch, R. (2008). Antigenic variation in Trypanosoma brucei: joining the DOTs. PLoS Biol., 6, e185.

    Article  Google Scholar 

  • Strogatz, S. H., & Mirollo, R. E. (1993). Splay states in globally coupled Josephson arrays: analytical prediction of Floquet multipliers. Phys. Rev. E, 47, 220–227.

    Article  Google Scholar 

  • Swift, J. W. (1988). Hopf bifurcation with the symmetry of the square. Nonlinearity, 1, 333–377.

    Article  MathSciNet  MATH  Google Scholar 

  • Turner, C. M. R. (2002). A perspective on clonal phenotypic (antigenic) variation in protozoan parasites. Parasitology, 125, S17–S23.

    Article  Google Scholar 

  • Wu, J. (1988). Symmetric functional differential equations and neural networks with memory. Trans. Am. Math. Soc., 350, 4799–4838.

    Article  Google Scholar 

  • Yuan, Y., & Campbell, S. A. (2004). Stability and synchronization of a ring of identical cells with delayed coupling. J. Dyn. Differ. Equ., 16, 709–744.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin B. Blyuss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blyuss, K.B., Kyrychko, Y.N. Symmetry Breaking in a Model of Antigenic Variation with Immune Delay. Bull Math Biol 74, 2488–2509 (2012). https://doi.org/10.1007/s11538-012-9763-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9763-8

Keywords

Navigation