Skip to main content
Log in

Central pattern generators for bipedal locomotion

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Golubitsky, Stewart, Buono and Collins proposed two models for the achitecture of central pattern generators (CPGs): one for bipeds (which we call leg) and one for quadrupeds (which we call quad). In this paper we use symmetry techniques to classify the possible spatiotemporal symmetries of periodic solutions that can exist in leg (there are 10 nontrivial types) and we explore the possibility that coordinated arm/leg rhythms can be understood, on the CPG level, by a small breaking of the symmetry in quad, which leads to a third CPG architecture arm. Rhythms produced by leg correspond to the bipedal gaits of walk, run, two-legged hop, two-legged jump, skip, gallop, asymmetric hop, and one-legged hop. We show that breaking the symmetry between fore and hind limbs in quad, which yields the CPG arm, leads to periodic solution types whose associated leg rhythms correspond to seven of the eight leg gaits found in leg; the missing biped gait is the asymmetric hop. However, when arm/leg coordination rhythms are considered, we find the correct rhythms only for the biped gaits of two-legged hop, run, and gallop. In particular, the biped gait walk, along with its arm rhythms, cannot be obtained by a small breaking of symmetry of any quadruped gait supported by quad.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves-Pinto, C.: Coupled oscillators. Phd thesis, Departamento de Matemática Aplicada, Faculdade de Ciências, Universidade do Porto, January (2004)

  2. D’Aout K., Vereecke, E., Schoonaert, K., De Clerq, D., Van Elsacker, L., Aerts, P.: Locomotion in bonobos (Pan paniscus): differences and similarities between bipedal and quadrupedal terrestrial walking, and a comparison with other locomotor modes. J. Anat. 204, 353–361 (2004)

    Google Scholar 

  3. Blickhan R. (1989). The spring-mass model for running and hopping. J. Biomech. 22:1217–1227

    Article  Google Scholar 

  4. Buono P.L. (2001). Models of central pattern generators for quadruped locomotion II. Secondary gaits, J. Math. Biol. 42(4):327–346

    Article  MATH  MathSciNet  Google Scholar 

  5. Buono P.L., Golubitsky M. (2001). Models of central pattern generators for quadruped locomotion I. Primary gaits. J. Math. Biol. 42:291–326

    Article  MATH  MathSciNet  Google Scholar 

  6. Bussel B., Roby-Brami A., Neris O.R., Yakovleff A. (1996). Evidence for a spinal stepping generator in man. Electrophysiological study, Acta Neurobiol. Exp. (Wars) 56(1):465–468

    Google Scholar 

  7. Calancie G.E., Needham-Shropshire B., Jacobs P., Willer K., Zych G., Green B.A. (1994). Involuntary stepping after chronic spinal injury. Evidence for a central pattern generator for locomotion in man. Brain 117(5):1143–1159

    Article  Google Scholar 

  8. Caldwell G.E., Whitall J. (1995). An energetic comparison of symmetrical and asymmetrical human gait. J. Motor Behav. 27:139–154

    Article  Google Scholar 

  9. Cohen A.H., Holmes P.J., Rand R.H. (1982). The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: a mathematical model. J. Math. Biol. 13(3):345–369

    Article  MATH  MathSciNet  Google Scholar 

  10. Cohen A.H., Ermentrout G.B., Kiemel T., Kopell N., Sigvardt K.A., Williams T.L. (1992). Modelling of intersegmental coordination in the lamprey central pattern generator for locomotion. Trends Neurosci 15(11):434–438

    Article  Google Scholar 

  11. Collins J.J., Stewart I. (1993). Coupled nonlinear oscillators and the symmetries of animal gaits, J. Nonlinear Sci. 3:349–392

    Article  MATH  MathSciNet  Google Scholar 

  12. Collins J.J., Stewart I. (1993). Hexapodal gaits and coupled nonlinear oscillator models. Biol. Cybern. 68:287–298

    Article  MATH  Google Scholar 

  13. Collins J.J., Stewart I. (1994). A group-theoretic approach to rings of coupled biological oscillators. Biol. Cybern. 71:95–103

    Article  MATH  Google Scholar 

  14. Dietz V. (2002). Do human bipeds use quadrupedal coordination?. Trends Neurosc. 25(9):462–467

    Article  Google Scholar 

  15. Dietz V., Fouad K., Bastiaanse C.M. (2001). Neuronal coordination of arm and leg movements during human locomotion. Eur. J. Neurosc. 14:1906–1914

    Article  Google Scholar 

  16. Dimitijevic M.R., Gerasimenko Y., Pinter M.M. (1998). Evidence for a spinal central pattern generator in humans. Ann. N Y Acad. Sci. 800:360–376

    Article  Google Scholar 

  17. Donker S.F. (2002). Flexibility of human walking: a study on interlimb coordination. PhD Thesis, Sint Maartenskliniek-research, Nijmegen

    Google Scholar 

  18. Donker S.F., Beek P.J., Wagenaar R.C., Mulder T. (2001). Coordination between arm and leg movements during locomotion. J. Motor Behav. 33(1):86–102

    Google Scholar 

  19. Donker S.F., Mulder Th., Nienhuis B., Duysens J. (2002). Adaptations in arm movements for added mass to wrist or ankle during walking. Exp. Brain Res. 145:26–31

    Article  Google Scholar 

  20. Duysens J., Van de Crommert H.W.A.A. (1998). Neural control of locomotion: Part 1: The central pattern generator from cats to humans. Gait Post. 7:131–141

    Article  Google Scholar 

  21. English A.W. (1979). Interlimb coordination during stepping in the cat: an electromyographic analysis. J. Neurophysiol. 42(1):229–243

    Google Scholar 

  22. Farley,C.T., Blickhan, R., Saito, J., Taylor, C.R. Hopping frequency in humans: a test of how springs set stride frequency in bouncing gaits. Am. Physiol. Soc. 2127–2132 (1991).

  23. Frigon A., Collins D.F., Zehr E.P. (2004). Effect of rhythmic arm movement on reflexes in the legs: modulation of soleus h-reflexes and somatosensory conditioning. J. Neurophysiol. 91:1516–1523

    Article  Google Scholar 

  24. Golubitsky M., Stewart I., Buono P.L., Collins J.J. (1998). A modular network for legged locomotion. Physica D 115:56–72

    Article  MATH  MathSciNet  Google Scholar 

  25. Golubitsky M., Stewart I., Buono P.L., Collins J.J. (1999). Symmetry in locomotor central pattern generators and animal gaits. Nature 401:693–695

    Article  Google Scholar 

  26. Golubitsky, M., Stewart, I.: The symmetry perspective. In: Progress in Mathematics 200, Birkhauser, Basel (2002)

  27. Golubitsky M., Stewart I., Török A. (2005). Patterns of synchrony in coupled cell networks with multiple arrows. SIAM J. Appl. Dynam. Sys. 4(1):78-100

    Article  MATH  Google Scholar 

  28. Grillner, S., Buchanan, J.T., Walker, P., Brodin, L.: Neural control of locomotion in lower vertebrates. In: Neural Control of Rhythmic Movements in Vertebrates. Wiley, New York pp. 1–40 (1988)

  29. Harcourt-Smith W.E.H., Aiello L.C. (2004). Fossils, feet and the evolution of human bipedal locomotion. J. Anat. 204:403–416

    Article  Google Scholar 

  30. Hayes G., Alexander R.McN. (1983). The hopping gait of crows (Crovidae) and other bipeds. J. Zool. 200:205–213

    Article  Google Scholar 

  31. Hiebert G.W., Whelan P.J., Prochazka A., Pearson K.G. (1996). Contribution of hind limb flexor muscle afferents to the timing of phase transitions in the cat step cycle. J. Neurophysiol. 75(3):1126–1137

    Google Scholar 

  32. Jenkins F. (1974). Primate Locomotion. Academic, New York

    Google Scholar 

  33. Kopell N., Ermentrout G.B. (1988). Coupled oscillators and the design of central pattern generators. Math. Biosci. 89:14–23

    MathSciNet  Google Scholar 

  34. Kopell N., Ermentrout G.B. (1990). Phase transitions and other phenomena in chains of oscillators. SIAM J. Appl. Math. 50:1014–1052

    Article  MATH  MathSciNet  Google Scholar 

  35. Mann R.A. (1982). Biomechanics. In: Jahss M.H. (eds) Disorders of the Foot. W.B. Saunders and Co., Philadelphia, pp. 37–67

    Google Scholar 

  36. Mann R.A., Moran G.T., Dougherty S.E. (1986). Comparative electromyography of the lower extremity in jogging, running and sprinting. Am. J. Sports Med. 14:501–510

    Article  Google Scholar 

  37. Margaria R., Cavagna G. (1964). Human locomotion in subgravity. Aerosp. Med. 35:1140–1146

    Google Scholar 

  38. Masoud O., Papanikolopoulos N. (2003). A method for human action recognition. Image Vis. Comput. 21(8):729–743

    Article  Google Scholar 

  39. Minetti A.E. (1998). The biomechanics of skipping gaits: a third locomotion paradigm?. Proc. R. Soc. Lond. B. 265:1227–1235

    Article  Google Scholar 

  40. Pearson K.G. (1993). Common principles of motor control in vertebrates and invertebrates. Ann. Rev. Neurosc. 16:265–297

    Article  Google Scholar 

  41. Peck A.J., Turvey M.T. (1997). Coordination dynamics of the bipedal galloping pattern. J. Motor Behav. 29(4):311–325

    Article  Google Scholar 

  42. Preuschoft H. (2004). Mechanisms for the acquisition of habitual bipedality: are there biomechanical reasons for the acquisition of upright bipedal posture?. J. Anat. 204:363–384

    Article  Google Scholar 

  43. Schmidt D. (2003). Insights into the evolution of human bipedalism from experimental studies of humans and other primates. J. Exp. Biol. 206:1437–1448

    Article  Google Scholar 

  44. Verstappen M., Aerts P. (2000). Terrestrial locomotion in the black-billed magpie. I. Spatio-temporal gait characteristics. Motor Contr. 4:150–164

    Google Scholar 

  45. Wagenaar R.C., van Emmerik R.E.A. (2000). Resonant frequencies of arms and legs identify different walking patterns. J. Biomech. 33:853–861

    Article  Google Scholar 

  46. Wannier T., Bastiaanse C., Colombo G., Dietz V. (2001). Arm to leg coordination in humans during walking, creeping and swimming activities. Exp. Brain Res. 141:375–379

    Article  Google Scholar 

  47. Whitall J. (1989). A developmental study of the interlimb coordination in running and galloping. J. Motor Behav. 21:409–428

    Google Scholar 

  48. Whitall J., Caldwell G.E. (1992). Coordination of symmetrical and asymmetrical human gait. J. Motor Behav. 24(4):339–353

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Golubitsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinto, C.M.A., Golubitsky, M. Central pattern generators for bipedal locomotion. J. Math. Biol. 53, 474–489 (2006). https://doi.org/10.1007/s00285-006-0021-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-006-0021-2

Keywords

Navigation