Skip to main content
Log in

A Hybrid Discrete-Continuum Mathematical Model of Pattern Prediction in the Developing Retinal Vasculature

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Pathological angiogenesis has been extensively explored by the mathematical modelling community over the past few decades, specifically in the contexts of tumour-induced vascularisation and wound healing. However, there have been relatively few attempts to model angiogenesis associated with normal development, despite the availability of animal models with experimentally accessible and highly ordered vascular topologies: for example, growth and development of the vascular plexus layers in the murine retina. The current study aims to address this issue through the development of a hybrid discrete-continuum mathematical model of the developing retinal vasculature in neonatal mice that is closely coupled with an ongoing experimental programme. The model of the functional vasculature is informed by a range of morphological and molecular data obtained over a period of several days, from 6 days prior to birth to approximately 8 days after birth.

The spatio-temporal formation of the superficial retinal vascular plexus (RVP) in wild-type mice occurs in a well-defined sequence. Prior to birth, astrocytes migrate from the optic nerve over the surface of the inner retina in response to a chemotactic gradient of PDGF-A, formed at an earlier stage by migrating retinal ganglion cells (RGCs). Astrocytes express a variety of chemotactic and haptotactic proteins, including VEGF and fibronectin (respectively), which subsequently induce endothelial cell sprouting and modulate growth of the RVP. The developing RVP is not an inert structure; however, the vascular bed adapts and remodels in response to a wide variety of metabolic and biomolecular stimuli. The main focus of this investigation is to understand how these interacting cellular, molecular, and metabolic cues regulate RVP growth and formation.

In an earlier one-dimensional continuum model of astrocyte and endothelial migration, we showed that the measured frontal velocities of the two cell types could be accurately reproduced by means of a system of five coupled partial differential equations (Aubert et al. in Bull. Math. Biol. 73:2430–2451, 2011). However, this approach was unable to generate spatial information and structural detail for the entire retinal surface. Building upon this earlier work, a more realistic two-dimensional hybrid PDE-discrete model is derived here that tracks the migration of individual astrocytes and endothelial tip cells towards the outer retinal boundary. Blood perfusion is included throughout plexus development and the emergent retinal architectures adapt and remodel in response to various biological factors. The resulting in silico RVP structures are compared with whole-mounted retinal vasculatures at various stages of development, and the agreement is found to be excellent. Having successfully benchmarked the model against wild-type data, the effect of transgenic over-expression of various genes is predicted, based on the ocular-specific expression of VEGF-A during murine development. These results can be used to help inform future experimental investigations of signalling pathways in ocular conditions characterised by aberrant angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Alarcon, T., Byrne, H., & Maini, P. K. (2003). A cellular automaton model for tumour growth in inhomogeneous environment. J. Theor. Biol., 225(2), 257–274.

    Article  MathSciNet  Google Scholar 

  • Alarcon, T., Owen, M. R., Byrne, H. M., & Maini, P. K. (2006). Multiscale modelling of tumour growth and therapy: the influence of vessel normalisation on chemotherapy. Comput. Math. Methods Med., 7(2–3), 85–119.

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson, A. R. A. (2005). A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. IMA J. Math. Med. Biol., 22, 163–186.

    Article  MATH  Google Scholar 

  • Anderson, A. R. A., & Chaplain, M. A. J. (1998). Continuous and discrete mathematical models of tumour-induced angiogenesis. Bull. Math. Biol., 60, 857–899.

    Article  MATH  Google Scholar 

  • Anderson, A. R. A., Chaplain, M. A. J., Newman, E. L., Steele, R. J. C., & Thompson, A. M. (2000). Mathematical modelling of tumour invasion and metastasis. J. Theor. Med., 2, 129–154.

    Article  MATH  Google Scholar 

  • Aubert, M., Chaplain, M. A. J., McDougall, S. R., Devlin, A., & Mitchell, C. A. (2011). A continuous mathematical model of the developing murine retinal vasculature. Bull. Math. Biol., 73, 2430–2451.

    Article  MathSciNet  Google Scholar 

  • Baron, M. (2003). An overview of the notch signalling pathway. Semin. Cell Dev. Biol., 14, 113–119.

    Article  Google Scholar 

  • Bauer, A. L., Jackson, T. L., & Jiang, Y. (2007). A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys. J., 92, 3105–3121.

    Article  Google Scholar 

  • Bentley, K., Gerhardt, H., & Bates, P. A. (2008). Agent-based simulation of notch-mediated tip cell selection in angiogenic sprout initialisation. J. Theor. Biol., 250(1), 25–36.

    Article  Google Scholar 

  • Brooker, R., Hozumi, K., & Lewis, J. (2006). Notch ligands with contrasting functions: jagged1 and delta1 in the mouse inner ear. Development, 133, 1277–1286.

    Article  Google Scholar 

  • Byrne, H. M., & Chaplain, M. A. J. (1995). Mathematical models for tumour angiogenesis: numerical simulations and nonlinear wave solutions. Bull. Math. Biol., 57, 461–486.

    MATH  Google Scholar 

  • Cai, Y., Shixiong, X., Wu, J., & Long, Q. (2011). Coupled modelling of tumour angiogenesis, tumour growth and blood perfusion. J. Theor. Biol., 279, 90–101.

    Article  Google Scholar 

  • Carmeliet, P., & Jain, R. K. (2011). Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat. Rev., Drug Discov., 10, 417–427.

    Article  Google Scholar 

  • Carr, R. T., & Wickham, L. L. (1991). Influence of vessel diameter on red cell distribution at microvascular bifurcations. Microvasc. Res., 41, 184–196.

    Article  Google Scholar 

  • Chaplain, M. A. J. (2000). Mathematical modelling of angiogenesis. J. Neurooncol., 50, 37–51.

    Article  Google Scholar 

  • Chaplain, M. A. J., & Stuart, A. M. (1993). A model mechanism for the chemotactic response of endothelial cells to tumour angiogenesis factor. IMA J. Math. Appl. Med. Biol., 10, 149–168.

    Article  MATH  Google Scholar 

  • Chaplain, M. A. J., McDougall, S. R., & Anderson, A. R. A. (2006). Mathematical modeling of tumour-induced angiogenesis. Annu. Rev. Biomed. Eng., 8, 233–257.

    Article  Google Scholar 

  • Claxton, S., & Fruttiger, M. (2003). Role of arteries in oxygen induced vaso-obliteration. Exp. Eye Res., 77, 305–311.

    Article  Google Scholar 

  • Das, A., Lauffenburger, D., Asada, H., & Kamm, R. D. (2010). A hybrid continuum-discrete modelling approach to predict and control angiogenesis: analysis of combinatorial growth factor and matrix effects on vessel-sprouting morphology. Philos. Trans. R. Soc. A, 368, 2937–2960.

    MathSciNet  MATH  Google Scholar 

  • Davies, M. H., Stempel, A. J., Hubert, K. E., & Powers, M. R. (2010). Altered vascular expression of EphrinB2 and EphB4 in a model of oxygen-induced retinopathy. Dev. Dyn., 239, 1695–1707.

    Article  Google Scholar 

  • Dorrell, M. I., Aguilar, E., & Friedlander, M. (2002). Retinal vascular development is mediated by endothelial filopodia, a preexisting astrocytic template and specific R-cadherin adhesion. Investig. Ophthalmol. Vis. Sci., 43(11), 3500–3510.

    Google Scholar 

  • Dorrell, M. I., Aguilar, E., Jacobson, R., Trauger, S. A., Friedlander, J., Siuzdak, G., & Friedlander, M. (2010). Maintaining retinal astrocytes normalizes revascularization and prevents vascular pathology associated with oxygen-induced retinopathy. GLIA, 58, 43–54.

    Article  Google Scholar 

  • Enden, G., & Popel, A. S. (1994). A numerical study of plasma skimming in small vascular bifurcations. J. Biomech. Eng., 119, 79–88.

    Article  Google Scholar 

  • Erber, R., Eichelsbacher, U., Powajbo, V., Korn, T., Djonov, V., Lin, J., Hammes, H. P., Grobholz, R., Ullrich, A., & Vajkoczy, P. (2006). EphB4 controls blood vascular morphogenesis during postnatal angiogenesis. EMBO J., 25, 628–641.

    Article  Google Scholar 

  • Fenton, B. M., Carr, R. T., & Cokelet, G. R. (1985). Nonuniform red cell distribution in 20–100 micron bifurcations. Microvasc. Res., 29, 103–126.

    Article  Google Scholar 

  • Ferrara, N., Houck, K., Jakeman, L., & Leung, D. W. (1992). Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr. Rev., 13, 18–32.

    Google Scholar 

  • Ferrara, N., Mass, R. D., Campa, C., & Kim, R. (2007). Targeting VEGF-A to treat cancer and age-related macular degeneration. Annu. Rev. Med., 58, 491–504.

    Article  Google Scholar 

  • Flegg, J. A., McElwain, D. L. S., Byrne, H. M., & Turner, I. W. (2009). A three species model to simulate application of hyperbaric oxygen therapy to chronic wounds. PLoS Comput. Biol., 5, e1000451.

    Article  MathSciNet  Google Scholar 

  • Folkman, J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med., 1(1), 27–31.

    Article  Google Scholar 

  • Fruttiger, M. (2002). Development of the mouse retinal vasculature: angiogenesis versus vasculogenesis. Investig. Ophthalmol. Vis. Sci., 43, 522–527.

    Google Scholar 

  • Fruttiger, M., Calver, A. R., Kruger, W. H., Mudhar, H. S., Michalovich, D., Takakura, N., Nishikawa, S., & Richardson, W. D. (1996). PDGF mediates a neuron-astrocyte interaction in the developing retina. Neuron, 17(6), 1117–1131.

    Article  Google Scholar 

  • Ganesan, P., He, S., & Xu, H. (2010). Analysis of retinal circulation using an image-based network model of retinal vasculature. Microvasc. Res., 80, 99–109.

    Article  Google Scholar 

  • Gariano, R. F. (2003). Cellular mechanisms in retinal vascular development. Prog. Retin. Eye Res., 22(3), 295–306.

    Article  Google Scholar 

  • Gerhardt, H. (2008). VEGF and endothelial guidance in angiogenic sprouting. Organogenesis, 4(4), 241–246.

    Article  MathSciNet  Google Scholar 

  • Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundkvist, A., Abramsson, A., Jeltsch, M., Mitchell, C., Alitalo, K., Shima, D., & Betsholtz, C. (2003). VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol., 161(6), 1163–1177.

    Article  Google Scholar 

  • He, S., Prasanna, G., & Yorio, T. (2007). Endothelin-1-mediated signaling in the expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in astrocytes. Investig. Ophthalmol. Vis. Sci., 48, 3737–3745.

    Article  Google Scholar 

  • Jackson, T., & Zheng, X. (2010). A cell-based model of endothelial cell migration, proliferation and maturation during corneal angiogenesis. Bull. Math. Biol., 72, 830–868.

    Article  MathSciNet  MATH  Google Scholar 

  • Karagiannis, E. D., & Popel, A. S. (2006). Distinct modes of collagen type I proteolysis by matrix metalloproteinase (MMP) 2 and membrane type I MMP during the migration of a tip endothelial cell: insights from a computational model. J. Theor. Biol., 238, 124–145.

    Article  Google Scholar 

  • Keyt, B. A., Berleau, L. T., Nguyen, H. V., Chen, H., Heinsohn, H., Vandlen, R., & Ferrara, N. (1996). The carboxyl-terminal domain (111-165) of vascular endothelial growth factor is critical for its mitogenic potency. J. Biol. Chem., 271, 7788–7795.

    Article  Google Scholar 

  • Klitzman, B., & Johnson, P. C. (1982). Capillary network geometry and red cell distribution in hamster cremaster muscle. Am. J. Physiol., 242, 211–219.

    Google Scholar 

  • Levick, J. R. (2000). An introduction to cardiovascular physiology (3rd ed.). London: Arnold.

    Google Scholar 

  • Levine, H. A., Pamuk, S., Sleeman, B. D., & Nielsen-Hamilton, M. (2001). Mathematical modeling of the capillary formation and development in tumor angiogenesis: penetration into the stroma. Bull. Math. Biol., 63(5), 801–863.

    Article  Google Scholar 

  • Liu, D., Wood, N. B., Witt, N., Hughes, A. D., Thom, S. A., & Xu, X. Y. (2009). Computational analysis of oxygen transport in the retinal arterial network. Curr. Eye Res., 34(11), 945–956.

    Article  Google Scholar 

  • Machado, M. J. C., Watson, M. G., Devlin, A. H., Chaplain, M. A. J., McDougall, S. R., & Mitchell, C. A. (2010). Dynamics of angiogenesis during wound healing: a coupled in vivo and in silico study. Microcirculation, 18, 183–197.

    Article  Google Scholar 

  • Macklin, P., McDougall, S., Anderson, A. R. A., Chaplain, M. A. J., Cristini, V., & Lowengrub, J. (2009). Multiscale modelling and nonlinear simulation of vascular tumour growth. J. Math. Biol., 58, 765–798.

    Article  MathSciNet  Google Scholar 

  • Maggelakis, S. A., & Savakis, A. E. (1996). A mathematical model of growth factor induced capillary growth in the retina. Math. Comput. Model., 24, 33–41.

    Article  MathSciNet  MATH  Google Scholar 

  • Maggelakis, S. A., & Savakis, A. E. (1999). A mathematical model of retinal neovascularization. Math. Comput. Model., 29, 91–97.

    Article  MATH  Google Scholar 

  • Mantzaris, N. V., Webb, S., & Othmer, H. G. (2004). Mathematical modeling of tumor-induced angiogenesis. J. Math. Biol., 49, 111–187.

    Article  MathSciNet  MATH  Google Scholar 

  • McDougall, S. R., Anderson, A. R. A., Chaplain, M. A. J., & Sherratt, J. A. (2002). Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull. Math. Biol., 64, 673–702.

    Article  Google Scholar 

  • McDougall, S. R., Anderson, A. R. A., & Chaplain, M. A. J. (2006). Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J. Theor. Biol., 241, 564–589.

    Article  MathSciNet  Google Scholar 

  • Mitchell, A. R., & Griffiths, D. F. (1980). The finite difference method in partial differential equations. Chichester: Wiley.

    MATH  Google Scholar 

  • Mitchell, C. A., Rutland, C. S., Walker, M., Nasir, M., Foss, A. J., Stewart, C., Gerhardt, H., Konerding, M. A., Risau, W., & Drexler, H. C. (2006). Unique vascular phenotypes following over-expression of individual VEGFA isoforms from the developing lens. Angiogenesis, 9(4), 209–224.

    Article  Google Scholar 

  • Mudhar, H. S., Pollock, R. A., Wang, C., Stiles, C. D., & Richardson, W. D. (1993). PDGF and its receptors in the developing rodent retina and optic nerve. Development, 118(2), 539–552.

    Google Scholar 

  • Ng, Y. S., Rohan, R., Sunday, M. E., Demello, D. E., & D’Amore, P. A. (2001). Differential expression of VEGF isoforms in mouse during development and in the adult. Dev. Dyn., 220, 112–121.

    Article  Google Scholar 

  • Olsen, L., Sherratt, J. A., Maini, P. K., & Arnold, F. (1997). A mathematical model for the capillary endothelial cell-extracellular matrix interactions in wound-healing angiogenesis. IMA J. Math. Appl. Med. Biol., 14, 261–281.

    Article  MATH  Google Scholar 

  • Orme, M. E., & Chaplain, M. A. J. (1997). Two-dimensional models of tumour angiogenesis and anti-angiogenesis strategies. IMA J. Math. Appl. Med. Biol., 14, 189–205.

    Article  MATH  Google Scholar 

  • Owen, M. R., Alarcon, T., & Maini, P. K. (2009a). Angiogenesis and vascular remodelling in normal and cancerous tissues. J. Math. Biol., 58, 689–721.

    Article  MathSciNet  Google Scholar 

  • Owen, M. R., Alarcon, T., Maini, P. K., & Byrne, H. M. (2009b). Angiogenesis and vascular remodelling in normal and cancerous tissues. J. Math. Biol., 58, 689–721.

    Article  MathSciNet  Google Scholar 

  • Park, J. E., Keller, G. A., & Ferrara, N. (1993). The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol. Biol. Cell, 4, 1317–1326.

    Google Scholar 

  • Peirce, S. M. (2008). Computational and mathematical modelling of angiogenesis. Microcirculation, 15(8), 739–751.

    Article  Google Scholar 

  • Perfahl, H., Byrne, H. M., Chen, T., Estrella, V., Lapin, A., Gatenby, R. A., Gillies, R. J., Lloyd, M. C., Maini, P. K., Reuss, M., & Owen, M. R. (2011). Multiscale modelling of vascular tumour growth in 3D: the roles of domain size and boundary conditions. PloS One, 6(4), e14790.

    Article  Google Scholar 

  • Pettet, G. J., Byrne, H. M., McElwain, D. L. S., & Norbury, J. (1996). A model of wound-healing angiogenesis in soft tissue. Math. Biosci., 136, 35–63.

    Article  MATH  Google Scholar 

  • Plank, M. J., & Sleeman, B. D. (2004). Lattice and non-lattice models of tumour angiogenesis. Bull. Math. Biol., 66, 1785–1819.

    Article  MathSciNet  Google Scholar 

  • Pons-Salort, M., van der Sanden, B., Juhem, A., Popov, A., & Stephanou, A. (2012). A computational framework to assess the efficacy of cytotoxic molecules and vascular disrupting agents against solid tumours. Math. Model. Nat. Phenom., 7, 49–77.

    Article  MathSciNet  MATH  Google Scholar 

  • Pries, A. R., Ley, K., Claassen, M., & Gaehtgens, P. (1989). Red cell distribution at microvascular bifurcations. Microvasc. Res., 38, 81–101.

    Article  Google Scholar 

  • Pries, A. R., Fritzsche, A., Ley, K., & Gaehtgens, P. (1992). Redistribution of red blood cell flow in microcirculatory networks by hemodilution. Circ. Res., 70, 1113–1121.

    Article  Google Scholar 

  • Pries, A. R., Secomb, T. W., Gessner, T., Sperandio, M. B., Gross, J. F., & Gaehtgens, P. (1994). Resistance to blood flow in microvessels in vivo. Circ. Res., 75, 904–915.

    Article  Google Scholar 

  • Pries, A. R., Secomb, T. W., & Gaehtgens, P. (1998). Structural adaptation and stability of microvascular networks: theory and simulations. Am. J. Physiol., 275, 349–360.

    Google Scholar 

  • Pries, A. R., Reglin, B., & Secomb, T. W. (2001). Structural adaptation of microvascular networks: functional roles of adaptive responses. Am. J. Physiol., Heart Circ. Physiol., 281, 1015–1025.

    Google Scholar 

  • Pries, A. R., Hopfner, M., le Noble, F., Dewhirst, M. W., & Secomb, T. W. (2010). The shunt problem: control of functional shunting in normal and tumour vasculature. Nat. Rev. Cancer, 10, 587–593.

    Article  Google Scholar 

  • Rutland, C. S., Mitchell, C. A., Nasir, M., Konerding, M. A., & Drexler, H. C. (2007). Microphthalmia, persistent hyperplastic hyaloid vasculature and lens anomalies following overexpression of VEGF-A188 from the alphaA-crystallin promoter. Mol. Vis., 13, 47–56.

    Google Scholar 

  • Sainson, R. C. A., & Harris, A. L. (2006). Hypoxia-regulated differentiation: let’s step it up a Notch. Trends Mol. Med., 12(4), 141–143.

    Article  Google Scholar 

  • Sainson, R., Aoto, J., Nakatsu, M. N., Holderfield, M., Conn, E., Koller, E., & Hughes, C. C. W. (2005). Cell-autonomous Notch signalling regulates endothelial cell branching and proliferation during vascular tubulogenesis. FASEB J., 19(8), 1027–1029.

    Google Scholar 

  • Schmid-Schoenbein, G. W., Skalak, R., Usami, S., & Chien, S. (1980). Cell distribution in capillary networks. Microvasc. Res., 19, 18–44.

    Article  Google Scholar 

  • Schugart, R. C., Friedman, A., Zhao, R., & Sen, C. K. (2008). Wound angiogenesis as a function of tissue oxygen tension: a mathematical model. Proc. Natl. Acad. Sci., 105, 2628–2633.

    Article  Google Scholar 

  • Scott, A., Powner, M. B., Gandhi, P., Clarkin, C., Gutmann, D. H., Johnson, R. S., Ferrara, N., & Fruttiger, M. (2010). Astrocyte-derived vascular endothelial growth factor stabilizes vessels in the developing retinal vasculature. PLoS One, 5, e11863.

    Article  Google Scholar 

  • Secomb, T. W., Alberding, J. P., Hsu, R., & Pries, A. R. (2007). Simulation of angiogenesis, remodeling and pruning in microvascular networks. FASEB J., 21, 897.10.

    Google Scholar 

  • Shima, D. T., Kuroki, M., Deutsch, U., Ng, Y. S., Adamis, A. P., & D’Amore, P. A. (1996). The mouse gene for vascular endothelial growth factor. Genomic structure, definition of the transcriptional unit, and characterization of transcriptional and post-transcriptional regulatory sequences. J. Biol. Chem., 271, 3877–3883.

    Article  Google Scholar 

  • Shirinifard, A., Gens, J. S., Zaiden, B. L., Poplawski, N. J., Swat, M., & Glazier, J. A. (2009). 3D multi-cell simulation of tumour growth and angiogenesis. PloS One, 4(10), e7190.

    Article  Google Scholar 

  • Stalmans, I., Ng, Y. S., Rohan, R., Fruttiger, M., Bouche, A., Yuce, A., Fujisawa, H., Hermans, B., Shani, M., Jansen, S., Hicklin, D., Anderson, D. J., Gardiner, T., Hammes, H. P., Moons, L., Dewerchin, M., Collen, D., Carmeliet, P., & D’Amore, P. A. (2002). Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. J. Clin. Invest., 109, 327–336.

    Google Scholar 

  • Stephanou, A., McDougall, S. R., Anderson, A. R. A., & Chaplain, M. A. J. (2005). Mathematical modelling of flow in 2D and 3D vascular networks: applications to anti-angiogenic and chemotherapeutic drug strategies. Math. Comput. Model., 41, 1137–1156.

    Article  MathSciNet  MATH  Google Scholar 

  • Stephanou, A., McDougall, S. R., Anderson, A. R. A., & Chaplain, M. A. J. (2006). Mathematical modelling of the influence of blood rheological properties upon adaptative tumour-induced angiogenesis. Math. Comput. Model., 44, 96–123.

    Article  MathSciNet  MATH  Google Scholar 

  • Stokes, C. L., & Lauffenburger, D. A. (1991). Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J. Theor. Biol. 152, 377–403.

    Article  Google Scholar 

  • Stone, J., Chan-Ling, T., Pe’er, J., Itin, A., Gnessin, H., & Keshet, E. (1996). Roles of vascular endothelial growth factor and astrocyte degeneration in the genesis of retinopathy of prematurity. Investig. Ophthalmol. Vis. Sci., 37, 290–299.

    Google Scholar 

  • Stout, A. U., & Stout, J. T. (2003). Retinopathy of prematurity. Pediatr. Clin. North Am., 50, 77–87.

    Article  Google Scholar 

  • Szczerba, D., & Szekely, G. (2005). Computational model of flow-tissue interactions in intussusceptive angiogenesis. J. Theor. Biol., 234, 87–97.

    Article  MathSciNet  Google Scholar 

  • Szczerba, D., Kurz, H., & Szekely, G. (2009). A computational model of intussusceptive microvascular growth and remodelling. J. Theor. Biol., 261, 570–583.

    Article  Google Scholar 

  • Uemura, A., Kusuhara, S., Wiegand, S. J., Yu, R. T., & Nishikawa, S. (2006). Tlx acts as a proangiogenic switch by regulating extracellular assembly of fibronectin matrices in retinal astrocytes. J. Clin. Invest., 116(2), 369–377.

    Article  Google Scholar 

  • Weidemann, A., Krohne, T. U., Aguilar, E., Kurihara, T., Takeda, N., Dorrell, M. I., Simon, M. C., Haase, V. H., Friedlander, M., & Johnson, R. S., (2010). Astrocyte hypoxic response is essential for pathological but not developmental angiogenesis of the retina. GLIA, 58(10), 1177–1185.

    Google Scholar 

  • Welter, M., Bartha, K., & Rieger, H. (2008). Emergent vascular network inhomogeneities and resulting blood flow patterns in a growing tumor. J. Theor. Biol., 250, 257–280.

    Article  Google Scholar 

  • Welter, M., Bartha, K., & Rieger, H. (2009). Vascular remodelling of an arterio-venous blood vessel network during solid tumour growth. J. Theor. Biol., 259, 405–422.

    Article  Google Scholar 

  • West, H., Richardson, W. D., & Fruttiger, M. (2005). Stabilization of the retinal vascular network by reciprocal feedback between blood vessels and astrocytes. Development, 132(8), 1855–1862.

    Article  Google Scholar 

  • Williams, C. K., Li, J. L., Murga, M., Harris, A. L., & Tosato, G. (2006). Up-regulation of the Notch ligand delta-like 4 inhibits VEGF induced endothelial cell function. Blood, 107(3), 931–939.

    Article  Google Scholar 

  • Wu, J., Xu, S., Long, Q., Collins, M. W., König, C., Zhao, G., Jiang, Y., & Padhani, A. R. (2008). Coupled modeling of blood perfusion in intravascular, interstitial spaces in tumor microvasculature. J. Biomech., 41, 996–1004.

    Article  Google Scholar 

  • Wu, J., Long, Q., Xu, S., & Padhani, A. R. (2009). Study of tumor blood perfusion and its variation due to vascular normalization by anti-angiogenic therapy based on 3D angiogenic microvasculature. J. Biomech., 42, 712–721.

    Article  Google Scholar 

  • Xue, C., Friedman, A., & Sen, C. K. (2009). A mathematical model of ischemic cutaneous wounds. Proc. Natl. Acad. Sci., 106, 16782–16787.

    Article  Google Scholar 

  • Yana, I., Sagara, H., Takaki, S., Takatsu, K., Nakamura, K., Nakao, K., Katsuki, M., Taniguchi, S., Aoki, T., Sato, H., Weiss, S. J., & Seiki, M. (2007). Crosstalk between neovessels and mural cells directs the site-specific expression of MT1-MMP to endothelial tip cells. J. Cell Sci., 120, 1607–1614.

    Article  Google Scholar 

  • Yen, R. T., & Fung, Y. C. (1978). Effect of velocity distribution on red cell distribution in capillary blood vessels. Am. J. Physiol., 235, 251–257.

    Google Scholar 

  • Zhang, M., Cheng, X., & Chintala, S. K. (2004). Optic nerve ligation leads to astrocyte-associated matrix metalloproteinase-9 induction in the mouse retina. Neurosci. Lett., 356, 140–144.

    Article  Google Scholar 

  • Zheng, X., Wise, S. M., & Cristini, V. (2005). Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method. Bull. Math. Biol., 67, 211–259.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the BBSRC: Grant # BB/F002254/1 and BB/F002807/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Watson.

Appendix A

Appendix A

Table 1 Parameter values used in all base-case simulations
Table 2 Parameter values used in Fig. 9 (all other relevant values unchanged)

We require some further details to explain the process of EC and AC sprout branching. At the beginning of the simulation each initial sprout is set to have an age of zero, but this is supplemented by also assigning each sprout a random time point in its cell cycle. Upon each subsequent occurrence of branching, we assume that one new sprout maintains the direction of its parent sprout while the other sprout direction is chosen randomly. In the former, we set the age of the sprout, and its cell cycle position, to be zero. In the latter, we again set the sprout age to zero, but here we assign a random cell cycle position. We define an additional two parameters, namely a threshold age for branching (t branch=0.076 days) and a mitosis time describing the length of the cell cycle (t mitosis=0.709 days). In order for branching to occur, both the age of the parent sprout and its individual cell cycle time must exceed these critical values. In addition to this, the probabilities of AC and EC branching are related to the concentrations of PDGF and VEGF, respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDougall, S.R., Watson, M.G., Devlin, A.H. et al. A Hybrid Discrete-Continuum Mathematical Model of Pattern Prediction in the Developing Retinal Vasculature. Bull Math Biol 74, 2272–2314 (2012). https://doi.org/10.1007/s11538-012-9754-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-012-9754-9

Keywords

Navigation