Skip to main content

Cellular Potts Model: Applications to Vasculogenesis and Angiogenesis

  • Chapter
  • First Online:
Probabilistic Cellular Automata

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 27))

Abstract

The cellular Potts model (CPM, a.k.a. Glazier–Graner–Hogeweg or GGH model) is a somewhat liberal extension of probabilistic cellular automata. The model is derived from the Ising and Potts models and represents biological cells as domains of CA-sites of the same state. A Hamiltonian energy is used to describe the balance of forces that the biological cells apply onto one another and their local environment. A Metropolis algorithm iteratively copies the state from one site into one of the adjacent sites, thus shifting the domain interfaces and moving the biological cells along the lattice. The approach is commonly used in applications of developmental biology, where the CPM often interacts with systems of ordinary-differential equations that model the intracellular chemical kinetics and partial-differential equations that model the extracellular chemical signal dynamics to constitute a hybrid and multiscale description of the biological system. In this chapter we will introduce the cellular Potts model and discuss its use in developmental biology, focusing on the development of blood vessels, a process called vascular morphogenesis. We will start by introducing a range of models focusing on uncovering the basic mechanisms of vascular morphogenesis: network formation and sprouting and then show how these models are extended with models of intracellular regulation and with interactions with the extracellular micro-environment. We then briefly review the integration of models of vascular morphogenesis in several examples of organ development in health and disease, including development, cancer, and age-related macular degeneration. We end by discussing the computational efficiency of the CPM and the available strategies for the validation of CPM-based simulation models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Alberi, L., Liu, S., Wang, Y., Badie, R., Smith-Hicks, C., Wu, J., Pierfelice, T.J., Abazyan, B., Mattson, M.P., Kuhl, D., Pletnikov, M., Worley, P.F., Gaiano, N.: Activity-induced notch signaling in neurons requires arc/arg3. 1 and is essential for synaptic plasticity in hippocampal networks. Neuron 69, 437–444 (2011)

    Article  Google Scholar 

  2. Anderson, A.R.A., Chaplain, M.A.J.: Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60(5), 857–899 (1998)

    Google Scholar 

  3. Anderson, A.R.A., Quaranta, V.: Integrative mathematical oncology. Nat. Rev. Cancer 8(3), 227–234 (2008)

    Article  Google Scholar 

  4. Bardin, A.J., Le Borgne, R., Schweisguth, F.: Asymmetric localization and function of cell-fate determinants: a fly’s view. Curr. Opin. Neurobiol. 14, 6–14 (2004)

    Article  Google Scholar 

  5. Bauer, A.L., Jackson, T.L., Jiang, Y.: A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys. J. 92, 3105–3121 (2007)

    Article  Google Scholar 

  6. Bauer, A.L., Jackson, T.L., Jiang, Y.: Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis. PLoS Comput. Biol. 5(7), e1000,445 (2009)

    Google Scholar 

  7. Bischofs, I.B., Schwarz, U.S.: Cell organization in soft media due to active mechanosensing. Proc. Natl. Acad. Sci. U.S.A. 100(16), 9274–9279 (2003)

    Article  Google Scholar 

  8. Blanco, R., Gerhardt, H.: VEGF and Notch in tip and stalk cell selection. Cold Spring Harbor Perspectives in Medicine 3 (2013)

    Google Scholar 

  9. Blum, Y., Belting, H.G., Ellertsdottir, E., Herwig, L., Lüders, F., Affolter, M.: Complex cell rearrangements during intersegmental vessel sprouting and vessel fusion in the zebrafish embryo. Dev. Biol. 316(2), 312–322 (2008)

    Article  Google Scholar 

  10. Boas, S.E.M., Merks, R.M.H.: Synergy of cell-cell repulsion and vacuolation in a computational model of lumen formation. J. R. Soc. Interface 11(92), e20131049 (2014)

    Google Scholar 

  11. Boas, S.E.M., Merks, R.M.H.: Tip cell overtaking occurs as a side effect of sprouting in computational models of angiogenesis. BMC Syst. Biol. 9, 86 (2015)

    Article  Google Scholar 

  12. Boas, S.E.M., Navarro Jimenez, M.I., Merks, R.M.H., Blom, J.G.: A global sensitivity analysis approach for morphogenesis models. BMC Syst. Biol. 9, 85 (2015)

    Article  Google Scholar 

  13. Bray, S.: Notch signalling: a simple pathway becomes complex. Nat. Rev. Mol. Cell Biol. 7, 678–689 (2011)

    Article  Google Scholar 

  14. Califano, J., Reinhart-King, C.: A balance of substrate mechanics and matrix chemistry regulates endothelial cell network assembly. Cell. Molec. Bioeng. 1(2), 122–132 (2008)

    Article  Google Scholar 

  15. Califano, J.P., Reinhart-King, C.A.: Exogenous and endogenous force regulation of endothelial cell behavior. J. Biomech. 43(1), 79–86 (2010)

    Article  Google Scholar 

  16. Cao, Y., Hong, A., Schulten, H., Post, M.J.: Update on therapeutic neovascularization. Cardiov. Res. 65, 639–648 (2005)

    Google Scholar 

  17. Carlier, A., Geris, L., Bentley, K., Carmeliet, G., Carmeliet, P., Van Oosterwyck, H.: MOSAIC: a multiscale model of osteogenesis and sprouting angiogenesis with lateral inhibition of endothelial cells. PLoS Comput. Biol. 8(10), e1002,724 (2012)

    Google Scholar 

  18. Carmeliet, P.: Angiogenesis in life, disease and medicine. Nature 438, 932–936 (2005)

    Article  Google Scholar 

  19. Carmeliet, P., Jain, R.K.: Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000)

    Article  Google Scholar 

  20. Checa, S., Rausch, M.K., Petersen, A., Kuhl, E., Duda, G.N.: The emergence of extracellular matrix mechanics and cell traction forces as important regulators of cellular self-organization. Biomech. Model. Mechanobiol. (2014)

    Google Scholar 

  21. Collier, J.R., Monk, N.A., Maini, P.K., Lewis, J.H.: Pattern formation by lateral inhibition with feedback: a mathematical model of delta-notch intercellular signalling. J. Theor. Biol. 183, 429–446 (1996)

    Article  Google Scholar 

  22. Coultas, L., Chawengsaksophak, K., Rossant, J.: Endothelial cells and vegf in vascular development. Nature 438, 937–945 (2005)

    Article  Google Scholar 

  23. Daub, J.T., Merks, R.M.H.: A cell-based model of extracellular-matrix-guided endothelial cell migration during angiogenesis. Bull. Math. Biol. 75, 1377–1399 (2013)

    Google Scholar 

  24. Daub, J.T., Merks, R.M.H.: Cell-based computational modeling of vascular morphogenesis using tissue simulation toolkit. In: Ribatti, D. (ed.) Vascular Morphogenesis: Methods and Protocols, Methods in Molecular Biology, vol. 1214, pp. 67–127. Springer, New York, NY (2015)

    Google Scholar 

  25. Davis, G.E., Bayless, K.J.: An integrin and rho gtpase-dependent pinocytic vacuole mechanism controls capillary lumen formation in collagen and fibrin matrices. Microcirculation 10(1), 27–44 (2003)

    Article  Google Scholar 

  26. Dequeant, M.L., Pourquie, O.: Segmental patterning of the vertebrate embryonic axis. Nat. Rev. Genet. 9, 370–382 (2008)

    Article  Google Scholar 

  27. Enderling, H., Hlatky, L., Hahnfeldt, P.: Migration rules: tumours are conglomerates of self-metastases. Br. J. Cancer 100(12), 1917–1925 (2009)

    Article  Google Scholar 

  28. Folkman, J.: Tumour angiogenesis: therapeutic implications. New Engl. J. Medic. 285, 1182–1186 (1971)

    Article  Google Scholar 

  29. Folkman, J.: Tumor angiogenesis: a possible control point in tumor growth. Ann. Intern. Med. 82, 96–100 (1975)

    Article  Google Scholar 

  30. Forrester, J.V., Chapman, A., Kerr, C., Roberts, J., Lee, W.R., Lackie, J.M.: Bovine retinal explants cultured in collagen gels. a model system for the study of proliferative retinopathy. Arch. Ophthalmol. 108, 415–420 (1990)

    Article  Google Scholar 

  31. Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundkvist, A., Abramsson, A., Jeltsch, M., Mitchell, C., Alitalo, K., Shima, D., Betsholtz, C.: VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003)

    Article  Google Scholar 

  32. Glazier, J.A., Balter, A., Popławski, N.J.: Magnetization to morphogenesis: a brief history of the Glazier-Graner-Hogeweg model. In: Anderson, A.R.A., Rejniak, K.A. (eds.) Single Cell-Based Models in Biology and Medicine, series Mathematics and Biosciences in Interaction, 3-28. Birkhaüser Verlag, Basel/Switzerland, pp. 79–106 (2007)

    Google Scholar 

  33. Glazier, J.A., Graner, F.: Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E 47(3), 2128–2154 (1993)

    Article  Google Scholar 

  34. Graner, F., Glazier, J.A.: Simulation of biological cell sorting using a two-dimensional extended potts model. Phys. Rev. Lett. 69, 2013–2016 (1992)

    Google Scholar 

  35. Harris, A.K., Wild, P.P., Stopak, D.D.: Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science (New York, NY) 208(4440), 177–179 (1980)

    Article  Google Scholar 

  36. Haston, W.S., Shields, J.M., Wilkinson, P.C.: The orientation of fibroblasts and neutrophils on elastic substrata. Exper. Cell Res. 146(1), 117–126 (1983)

    Article  Google Scholar 

  37. Hogeweg, P.: Cellular automata as a paradigm for ecological modeling. Appl. Math. Comput. 27, 81–100 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  38. Holtfreter, J.: Experimental studies on the development of the pronephros. Rev. Can. Biol. 3, 220–250 (1994)

    Google Scholar 

  39. Jakobsson, L., Franco, C.A., Bentley, K., Collins, R.T., Ponsioen, B., Aspalter, I.M., Rosewell, I., Busse, M., Thurston, G., Medvinsky, A., Schulte-Merker, S., Gerhardt, H.: Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell Biol. 12(10), 943–953 (2010)

    Article  Google Scholar 

  40. Käfer, J., Hayashi, T., Marée, A.F.M., Carthew, R.W., Graner, F.: Cell adhesion and cortex contractility determine cell patterning in the Drosophila retina. P. Natl. Acad. Sci. USA 104(47), 18549–18554 (2007)

    Article  Google Scholar 

  41. Kamei, M., Saunders, W.B., Bayless, K.J., Dye, L., Davis, G.E., M., W.B.: Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 27(442), 453–456 (2006)

    Google Scholar 

  42. Kleinstreuer, N., Dix, D., Rountree, M., Baker, N., Sipes, N., Reif, D., Spencer, R., Knudsen, T.: A computational model predicting disruption of blood vessel development. PLoS Comput. Biol. 9(4), e1002,996 (2013)

    Google Scholar 

  43. Koch, A.E.: Angiogenesis as a target in rheumatoid arthritis. Ann. Rheum. Dis. 62(Suppl 2), 60–67 (2003)

    Google Scholar 

  44. Köhn-Luque, A., de Back, W., Starruss, J., Mattiotti, A., Deutsch, A.e.a.: Early embryonic vascular patterning by matrix-mediated paracrine signalling: A mathematical model study. PLoS One 6(9), e24,175 (2011)

    Google Scholar 

  45. Krieg, M., Arboleda-Estudillo, Y., Puech, P.H., Käfer, J., Graner, F., Müller, D.J., Heisenberg, C.P.: Tensile forces govern germ-layer organization in zebrafish. Nat. Cell Biol. 10, 429–436 (2008)

    Google Scholar 

  46. Lemmon, C.A., Romer, L.H.: A predictive model of cell traction forces based on cell geometry. Biophys. J. 99(9), L78–L80 (2010)

    Article  Google Scholar 

  47. Lieber, T., Kidd, S., Struhl, G.: DSL-notch signaling in the drosophila brain in response to olfactory stimulation. Neuron 69, 468–481 (2004)

    Article  Google Scholar 

  48. Lo, C., Wang, H., Dembo, M., Wang, Y.L.: Cell movement is guided by the rigidity of the substrate. Biophys 79(1), 144–152 (2000)

    Google Scholar 

  49. Lobov, I.B., Renard, R.A., Papadopoulos, N., Gale, N.W., Thurston, G., Yancopoulos, G.D., Wiegand, S.J.: Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. PNAS 104, 3219–3224 (2007)

    Article  Google Scholar 

  50. Lushnikov, P.M., Chen, N., Alber, M.: Macroscopic dynamics of biological cells interacting via chemotaxis and direct contact. Phys. Rev. E 78(6), 061,904 (2008)

    Google Scholar 

  51. Manoussaki, D., Lubkin, S.R., Vernon, R.B., Murray, J.D.: A mechanical model for the formation of vascular networks in vitro. Acta Biotheoretica 44(3–4), 271–282 (1996)

    Article  Google Scholar 

  52. Marée, A., Grieneisen, V., Hogeweg, P.: The cellular potts model and biophysical properties of cells, tissues and morphogenesis. In: Single Cell-Based Models in Biology and Medicine pp. 107–136 (2007)

    Google Scholar 

  53. Marée, A.F.M., Grieneisen, V.A., Edelstein-Keshet, L.: How cells integrate complex stimuli: The effect of feedback from phosphoinositides and cell shape on cell polarization and motility. PLoS Comput. Biol. 8(3), e1002,402 (2012)

    Google Scholar 

  54. Marée, A.F.M., Jilkine, A., Dawes, A., Grieneisen, V.A., Edelstein-Keshet, L.: Polarization and movement of keratocytes: a multiscale modelling approach. B. Math. Biol. 68(5), 1169–1211 (2006)

    Article  MATH  Google Scholar 

  55. Martin, A., Komada, M.R., Sane, D.C.: Abnormal angiogenesis in diabetes mellitus. Med. Res. Rev. 23, 117–145 (2003)

    Article  Google Scholar 

  56. Merks, R.M.H., Brodsky, S., Goligorksy, M., Newman, S., Glazier, J.A.: Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Devel. Biol. 289, 44–54 (2006)

    Article  Google Scholar 

  57. Merks, R.M.H., Glazier, J.A.: A cell-centered approach to developmental biology. Physica A 352(1), 113–130 (2005)

    Google Scholar 

  58. Merks, R.M.H., Koolwijk, P.: Modeling morphogenesis in silico and in vitro: towards quantitative, predictive cell-based modeling. Math. Model. Nat. Pheno. 4(5), 149–171 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  59. Merks, R.M.H., Perryn, E.D., Shirinifard, A., Glazier, J.A.: Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth. PLoS Comput. Biol 4(9), e1000,163 (2008)

    Google Scholar 

  60. Mitchell, C., Rutland, C., Walker, M., Nasir, M., Foss, A., Stewart, C., Gerhardt, H., Konerding, M., Risau, W., Drexler, H.: Unique vascular phenotypes following over-expression of individual VEGFA isoforms from the developing lens. Angiogenesis 9(4), 209–224 (2006)

    Article  Google Scholar 

  61. Ouchi, N.B., Glazier, J.A., Rieu, J.P., Upadhyaya, A., Sawada, Y.: Improving the realism of the cellular Potts model in simulations of biological cells. Phys. A Stat. Mech. Appl. 329(3–4), 451–458 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  62. Palm, M.M., Dallinga, M.G., van Dijk, E., Klaassen, I., Schlingemann, R.O., Merks, R.M.H.: Computational screening of angiogenesis model variants predicts that differential chemotaxis helps tip cells move to the sprout tip and accelerates sprouting. PLoS ONE 11(11), e0159478 (2016)

    Article  Google Scholar 

  63. Palm, M.M., Merks, R.M.H.: Vascular networks due to dynamically arrested crystalline ordering of elongated cells. Phys. Rev. E 87, e012,725 (2013)

    Google Scholar 

  64. Palm, M.M., Merks, R.M.H.: Large-scale parameter studies of cell-based models of tissue morphogenesis using CompuCell 3D or Virtual Leaf. In: Tissue Morphogenesis. Methods in Molecular Biology, vol. 1189, pp. 301–322. Springer, New York (2014)

    Google Scholar 

  65. Peirce, S.M.: Computational and mathematical modeling of angiogenesis. Microcirculation 15(8), 739–751 (2008)

    Article  Google Scholar 

  66. Pelham, R.J., Wang, Y.L.: Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. U.S.A. 94(25), 13661–13665 (1997)

    Article  Google Scholar 

  67. Pitt-Francis, J., Pathmanathan, P., Bernabeu, M.O., Bordas, R., Cooper, J., Fletcher, A.G., Mirams, G.R., Murray, P., Osborne, J.M., Walter, A., Chapman, S.J., Garny, A., van Leeuwen, I.M.M., Maini, P.K., Rodriguez, B., Waters, S.L., Whiteley, J.P., Byrne, H.M., Gavaghan, D.J.: Chaste: A test-driven approach to software development for biological modelling. Comput. Phys. Commun. 180(12), 2452–2471 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  68. Prokopiou, S.A.: Integrative modelling of angiogenesis in the bovine corpus luteum. Ph.D. thesis, University of Nottingham (2013)

    Google Scholar 

  69. Prokopiou, S.A., Owen, M.R., Byrne, H.M., Ziyad, S., Domigan, C., Iruela-Arispe, M.L., Jiang, Y.: Integrative modeling of sprout formation in angiogenesis: coupling the VEGFA-Notch signaling in a dynamic stalk-tip cell selection. ArXiv e-prints (2016)

    Google Scholar 

  70. Reinhart-King, C.A., Dembo, M., Hammer, D.A.: Cell-cell mechanical communication through compliant substrates. Biophys. J. 95(12), 6044–6051 (2008)

    Article  Google Scholar 

  71. Riveline, D.D., Zamir, E.E., Balaban, N.Q., Schwarz, U.S., Ishizaki, T.T., Narumiya, S.S., Kam, Z.Z., Geiger, B.B., Bershadsky, A.D.: Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153(6), 1175–1186 (2001)

    Article  Google Scholar 

  72. Roegiers, F., Jan, Y.N.: Asymmetric cell division. Curr. Opin. Cell Biol. 16, 195–205 (2004)

    Article  Google Scholar 

  73. Savill, N.J., Hogeweg, P.: Modelling morphogenesis: From single cells to crawling slugs. J. Theor. Biol. 184, 229–235 (1997)

    Article  Google Scholar 

  74. Scianna, M.: A multiscale hybrid model for pro-angiogenic calcium signals in a vascular endothelial cell. J. Math. Biol. 74(6), 1253–1291 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  75. Scianna, M., Preziosi, L.: Modeling the influence of nucleus elasticity on cell invasion in fiber networks and microchannels. J. Theor. Biol. 317, 394–406 (2013)

    Article  Google Scholar 

  76. Scott, A., Powner, M.B., Gandhi, P., Clarkin, C., Gutmann, D.H.e.a.: Astrocyte-derived vascular endothelial growth factor stabilizes vessels in the developing retinal vasculature. PLoS One 5(7), e11,863 (2010)

    Google Scholar 

  77. Segel, L.A.: Computing an organism. PNAS 98(7), 3639–3640 (2001)

    Article  Google Scholar 

  78. Serini, G., Ambrosi, D., Giraudo, E., Gamba, A., Preziosi, L., Bussolino, F.: Modeling the early stages of vascular network assembly. EMBO J. 22(8), 1771–1779 (2003)

    Article  Google Scholar 

  79. Shirinifard, A., Gens, J.S., Zaitlen, B.L., Popławski, N.J., Swat, M., Glazier, J.A.: 3D multi-cell simulation of tumor growth and angiogenesis. PLoS ONE 4(10), e7190 (2009)

    Article  Google Scholar 

  80. Shirinifard, A., Glazier, J.A., Swat, M., Gens, J.S., Family, F., Jiang, Y., Grossniklaus, H.E.: Adhesion failures determine the pattern of choroidal neovascularization in the eye: a computer simulation study. PLoS Comput. Biol. 8(5), e1002,440 (2012)

    Google Scholar 

  81. Sozinova, O., Jiang, Y., Kaiser, D., Alber, M.: A three-dimensional model of myxobacterial fruiting-body formation. P. Natl. Acad. Sci. USA 103(46), 17255–17259 (2006)

    Article  Google Scholar 

  82. Starruß, J., Bley, T., Søgaard-Andersen, L., Deutsch, A.: A new mechanism for collective migration in myxococcus xanthus. J. Stat. Phys. 128(1–2), 269–286 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  83. Starruß, J., De Back, W., Brusch, L., Deutsch, A.: Morpheus: a user-friendly modeling environment for multiscale and multicellular systems biology. Bioinformatics (2014)

    Google Scholar 

  84. Steinberg, M.S.: Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. Science 141, 401–408 (1963)

    Article  Google Scholar 

  85. Strilić, B., Eglinger, J., Krieg, M., Zeeb, M., Axnick, J., Babál, P., Müller, D.J., Lammert, E.: Electrostatic cell-surface repulsion initiates lumen formation in developing blood vessels. Curr. Biol. 20(22), 2003–2009 (2010)

    Google Scholar 

  86. Swat, M.H., Thomas, G.L., Belmonte, J.M., Shirinifard, A., Hmeljak, D., Glazier, J.A.: Multi-Scale Modeling of Tissues Using CompuCell3D, vol. 110. Elsevier Inc. (2012)

    Google Scholar 

  87. Szabó, A., Czirók, A.: The role of cell-cell adhesion in the formation of multicellular sprouts. Math. Model Nat. Phenom. 5(1), 106–122 (2010)

    Google Scholar 

  88. Szabó, A., Erica, D.P., Czirók, A.: Network formation of tissue cells via preferential attraction to elongated structures. Phys. Rev. Lett. 98(3), 038,102 (2007)

    Google Scholar 

  89. Szabó, A., Mehes, E., Kosa, E., Czirók, A.: Multicellular sprouting in vitro. Biophys. J. 95(6), 2702–2710 (2008)

    Article  Google Scholar 

  90. Tapia, J.J., D’souza, R.M.: Parallelizing the cellular potts model on graphics processing units. Comput. Phys. Commun. 182(4), 857–865 (2011)

    Google Scholar 

  91. Turner, S., Sherratt, J.A.: Intercellular adhesion and cancer invasion: a discrete simulation using the extended potts model. J. Theor. Biol. 216, 85–100 (2002)

    Article  MathSciNet  Google Scholar 

  92. Vernon, R.B., Sage, E.H.: Between molecules and morphology. Extracellular matrix and creation of vascular form. Am. J. Pathol. 147(4), 873–883 (1995)

    Google Scholar 

  93. van Oers, R.F.M., Rens, E.G., LaValley, D.J., Reinhart-King, C.A., Merks, R.M.H.: Mechanical cell-matrix feedback explains pairwise and collective endothelial cell behavior in vitro. PLoS Comput Biol 10(8), e1003,774 (2014)

    Google Scholar 

  94. Voss-Böhme, A.: Multi-scale modeling in morphogenesis: a critical analysis of the cellular potts model. PLoS ONE 7(9), e42, 852 (2012)

    Google Scholar 

  95. Vroomans, R.M.A., Marée, A.F.M., de Boer, R.J., Beltman, J.B.: Chemotactic migration of T cells towards dendritic cells promotes the detection of rare antigens. PLoS Comput. Biol. 8(11), e1002,763 (2012)

    Google Scholar 

  96. Wang, Y., Kaiser, M.S., Larson, J.D., Nasevicius, A., Clark, K.J., Wadman, S.A., Roberg-Perez, S.E., Ekker, S.C., Hackett, P.B., McGrail, M., Essner, J.J.: Moesin1 and VE-cadherin are required in endothelial cells during in vivo tubulogenesis. Development 137, 3119–3128 (2010)

    Google Scholar 

  97. Winer, J.P., Oake, S., Janmey, P.A.: Non-linear elasticity of extracellular matrices enables contractile cells to communicate local position and orientation. PLoS ONE 4(7), e6382 (2009)

    Article  Google Scholar 

  98. Yu, C., Yang, B.: Parallelizing the cellular potts model on gpu and multi-core cpu: An opencl cross-platform study. In: 2014 11th International Joint Conference on Computer Science and Software Engineering (JCSSE), pp. 117–122 (2014)

    Google Scholar 

  99. Zajac, M., Jones, G., Glazier, J.: Simulating convergent extension by way of anisotropic differential adhesion. J. Theor. Biol. 222(2), 247–259 (2003)

    Google Scholar 

  100. Zajac, M., Jones, G.L., Glazier, J.A.: Model of convergent extension in animal morphogenesis. Phys. Rev. Lett. 85, 2022–2025 (2000)

    Google Scholar 

Download references

Acknowledgements

We thank Indiana University and the Biocomplexity Institute for providing the CompuCell3D modeling environment and SURFsara (www.surfsara.nl) for the support in using the Lisa Compute Cluster. The investigations were in part supported by the Division for Earth and Life Sciences (ALW) with financial aid from the Netherlands Organization for Scientific Research (NWO) through Vidi grant 864.10.009. YJ was supported partially by the National Institute of Health grant U01CA143069.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roeland M. H. Merks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boas, S.E.M., Jiang, Y., Merks, R.M.H., Prokopiou, S.A., Rens, E.G. (2018). Cellular Potts Model: Applications to Vasculogenesis and Angiogenesis. In: Louis, PY., Nardi, F. (eds) Probabilistic Cellular Automata. Emergence, Complexity and Computation, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-65558-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65558-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65556-7

  • Online ISBN: 978-3-319-65558-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics