Skip to main content
Log in

Persistence in a Single Species CSTR Model with Suspended Flocs and Wall Attached Biofilms

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider a mathematical model for a bacterial population in a continuously stirred tank reactor (CSTR) with wall attachment. This is a modification of the Freter model, in which we model the sessile bacteria as a microbial biofilm. Our analysis indicates that the results of the algebraically simpler original Freter model largely carry over. In a computational simulation study, we find that the vast majority of bacteria in the reactor will eventually be sessile. However, we also find that suspended biomass is relatively more efficient in removing substrate from the reactor than biofilm bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

area (m2)

a u :

half-saturation Monod const. of suspended bacteria (Freter) (g/m3)

a w :

half-saturation Monod const. of wall-attached bacteria (Freter) (g/m3)

D :

dilution rate (1/day)

D c :

diffusion coefficient (m2/day)

E :

erosion parameter (1/m⋅day)

F :

flow (velocity) through the reactor (Freter) (m3/day)

K λ :

half-saturation Monod constant of biofilm (g/m3)

K u :

half-saturation Monod constant of suspended bacteria (g/m3)

k λ :

death rate of biofilm (1/day)

k u :

death rate of suspended bacteria (1/day)

k w :

death rate of wall-attached bacteria in Freter model (1/day)

m u :

maximum growth rate of suspended bacteria (Freter) (1/day)

m w :

maximum growth rate of wall-attached bacteria (Freter) (1/day)

Q :

flow (velocity) through the reactor (m3/day)

S :

substrate concentration (g/m3)

S in :

substrate concentration at inlet (g/m3)

u :

suspended bacteria (g)

u :

concentration of suspended bacteria (Freter) (g/m3)

V :

volume of the reactor (m3)

w :

areal biomass density of wall-attached bacteria (g/m2)

w max :

maximum areal biomass density of wall-attached bacteria (g/m2)

W=w/w max :

wall occupancy fraction (–)

α :

attachment rate (1/day)

β :

detachment rate (Freter) (1/day)

λ :

biofilm thickness (m)

\(\mu_{\lambda}^{\max}\) :

maximum growth rate of biofilm (1/day)

\(\mu_{u}^{\max}\) :

maximum growth rate of suspended bacteria (1/day)

γ :

yield (–)

ρ :

biofilm biomass density (g/m3)

References

  • Abbas, F., & Eberl, H. J. (2011a). Analytical flux approximation for the Monod boundary value problem. Appl. Math. Comput., 218(4), 1484–1494.

    Article  MathSciNet  MATH  Google Scholar 

  • Abbas, F., & Eberl, H. J. (2011b). Investigation of the role of mesoscale detachment rate expressions in a macroscale model of a porous medium biofilm reactor. Accepted in Int. J. Biomath. Biostats. (Scheduled for 2(1), 2011)

  • Abbas, F., Sudarsan, R., & Eberl, H. J. (2012). Longtime behavior of one-dimensional biofilm models with shear dependent detachment rates. To appear in Math. Biosc. Eng., 9(2).

  • Ballyk, M. M., Jones, D. A., & Smith, H. L. (2001). Microbial competition in reactors with wall attachment. Microb. Ecol., 41(3), 210–221.

    Google Scholar 

  • Ballyk, M. M., Jones, D. A., & Smith, H. L. (2008). The biofilm model of Freter: a review. In P. Magal & S. Ruan (Eds.), Springer lecture notes in mathematics: Vol. 1936. Structured population models in biology and epidemiology. Berlin: Springer.

    Chapter  Google Scholar 

  • Bester, E., Edwards, E. A., & Wolfaardt, G. M. (2009). Planktonic cell yield is linked to biofilm development. Can. J. Microbiol., 55(10), 1195–1206.

    Article  Google Scholar 

  • Boldin, B. (2008). Persistence and spread of gastro-intestinal infections: the case of enterotoxigenic Escherichia coli in piglets. Bull. Math. Biol., 70(7), 2077–2101.

    Article  MathSciNet  MATH  Google Scholar 

  • Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., & Lappin-Scott, H. M. (1995). Microbial Biofilms. Annu. Rev. Microbiol., 49, 711–745.

    Article  Google Scholar 

  • Flemming, H. C. (2000). Biofilme—das Leben am Rande der Wasserphase. Nachr. Chem., 48, 442–447.

    Article  Google Scholar 

  • Freter, R., Brickner, H., Fekete, J., Vickerman, M., & Carey, K. (1983). Survival and implantation of Escherichia coli in the intestinal tract. Infect. Immun., 39, 686–703.

    Google Scholar 

  • Grigorieva, E. V., & Khailov, E. N. (2010). Minimization of pollution concentration on a given time interval for the waste water cleaning plant. J. Control Sci. Eng. 2010:712794. 10 pages.

    Google Scholar 

  • El Hajji, M., Mazenc, F., & Harmand, J. (2010). A mathematical study of a syntrophic relationship of a model of anaerobic digestion process. Math. Biosci. Eng., 7(3), 641–656.

    Article  MathSciNet  Google Scholar 

  • Henze, M., Gujer, W., Takashi, M., & van Loosdrecht, M. (2002). Activated Sludge Models ASM1, ASM2, ASM2d and ASM3. London: IWA.

    Google Scholar 

  • IWA Task Group (2002). Anaerobic digestion model No. 1 (ADM1). London: IWA.

    Google Scholar 

  • Jones, D., Kojouharov, H. V., Le, D., & Smith, H. (2003). The Freter model: a simple model of biofilm formation. Math. Biosci., 47, 137–152.

    MathSciNet  MATH  Google Scholar 

  • Lewandowski, Z., & Beyenal, H. (2007). Fundamentals of biofilm research. Boca Raton: CRC Press.

    Google Scholar 

  • Mašić, A., Bengtsson, J., & Christensson, M. (2010). Measuring and modeling the oxygen profile in a nitrifying Moving Bed Biofilm Reactor. Math. Biosci., 227, 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  • Moreno, J. (1999). Optimal time control of bioreactors for the wastewater treatment. Optim. Control Appl. Methods, 20, 145–164.

    Article  Google Scholar 

  • Morgenroth, E. (2003). Detachment: an often-overlooked phenomenon in biofilm research and modeling. In S. Wuertz, et al. (Eds.), Biofilms in wastewater treatment (pp. 246–290). London: IWA.

    Google Scholar 

  • Müller, T. G., Noykova, N., Gyllenberg, M., & Timmer, J. (2002). Parameter identification in dynamical models of anaerobic waste water treatment. Math. Biosci., 177–178, 147–160.

    Article  Google Scholar 

  • Pritchett, L. A., & Dockery, J. D. (2001). Steady state solutions of a one-dimensional biofilm model. Math. Comput. Model., 33, 255–263.

    Article  MATH  Google Scholar 

  • Rittmann, B. E. (1982). The effect of shear stress on biofilm loss rate. Biotechnol. Bioeng., 24, 501–506.

    Article  Google Scholar 

  • Rittmann, B. E., & McCarty, P. L. (2001). Environmental biotechnology. New York: McGraw-Hill.

    Google Scholar 

  • Smith, H. L., & Waltman, P. (1995). The theory of the chemostat. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Stemmons, E. D., & Smith, H. L. (2000). Competition in a chemostat with wall attachment. SIAM J. Appl. Math., 61(2), 567–595.

    Article  MathSciNet  MATH  Google Scholar 

  • Stewart, P. S. (2003). Diffusion in biofilms. J. Bacteriol., 185(5), 1485–1491.

    Article  Google Scholar 

  • Szomolay, B. (2008). Analysis of a moving boundary value problem arising in biofilm modeling. Math. Methods Appl. Sci., 31, 1835–1859.

    Article  MathSciNet  MATH  Google Scholar 

  • Walter, W. (2000). Gewöhnliche Differentialgleichungen (7th ed.). Berlin: Springer.

    Book  MATH  Google Scholar 

  • Wanner, O., & Gujer, W. (1986). A multispecies biofilm model. Biotechnol. Bioeng., 28, 314–328.

    Article  Google Scholar 

  • Wanner, O., Eberl, H., Morgenroth, E., Noguera, D. R., Picioreanu, C., Rittmann, B., & van Loosdrecht, M. (2006). Scientific and technical report: No. 18. Mathematical modeling of biofilms. London: IWA.

    Google Scholar 

  • Xavier, J. B., Picioreanu, C., & van Loosdrecht, M. C. M. (2004). A modeling study of the activity and structure of biofilms in biological reactors. Biofilms, 1(4), 377–391.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alma Mašić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mašić, A., Eberl, H.J. Persistence in a Single Species CSTR Model with Suspended Flocs and Wall Attached Biofilms. Bull Math Biol 74, 1001–1026 (2012). https://doi.org/10.1007/s11538-011-9707-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9707-8

Keywords

Navigation