Skip to main content

A Chemostat Model with Wall Attachment: The Effect of Biofilm Detachment Rates on Predicted Reactor Performance

  • Conference paper
  • First Online:
Mathematical and Computational Approaches in Advancing Modern Science and Engineering

Abstract

We consider a previously introduced mathematical model of chemostat with suspended and wall attached growth and exchange of biomass via biofilm detachment and reattachment. In this study we investigate the role of the specific choice of a biomass detachment criterion. We find that this choice does greatly affect output parameters such as biomass in the system, but it does not affect strongly effluent concentration and hence the prediction of reactor performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbas, F., Eberl, H.J.: Investigation of the role of mesoscale detachment rate expressions in a macroscale model of a porous medium biofilm Reactor, Int. J. Biomath. Biostat. 2, 123–143 (2013)

    MATH  Google Scholar 

  2. Abbas, F., Sudarsan, R., Eberl, H.J.: Longtime behaviour of one-dimensional biofilm models with shear dependent detachment rates. Math. Biosci. Eng. 9, 215–239 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bester, E., Edwards, E.A., Wolfaardt, G.M.: Planktonic cell yield is linked to biofilm development. Can. J. Microbiol. 55, 1195–1206 (2009)

    Article  Google Scholar 

  4. Duddu, R., Chopp, D.L., Moran, B: A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment. Biotechnol. Bioeng. 103, 92–104 (2008)

    Article  Google Scholar 

  5. Emerenini, B.O., Hense, B.A., Kuttler, C., Eberl, H.J.: A mathematical model of quorum sensing induced biofilm detachment. PLoS ONE 10 (7), e0132385 (2015)

    Article  Google Scholar 

  6. Hunt, S.M., Hamilton, M.A., Sears, J.T., Harkin, G., Reno, J: A computer investigation of chemically mediated detachment in bacterial biofilms. J. Microbiol. 149, 1155–1163 (2003)

    Article  Google Scholar 

  7. Jones, D., Kojouharov, H.V., Le, D., Smith, H.L.: The Freter model: a simple model of biofilm formation. Math. Biol. 47, 137–152 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kommendal, R., Bakke, R.: Modeling Pseudomonas aeruginosa biofilm detachment. HIT Working Paper no 3/2003 (2003)

    Google Scholar 

  9. Masic, A., Eberl, H.J.: Persistence in a single species CSTR model with suspended flocs and wall attached biofilms. Bull. Math. Biol. 74, 1001–1024 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Morgenroth, E.: Detachment: an often-overlooked phenomenon in biofilm research and modeling. In: Wuertz, S., et al. (eds.) Biofilms in Wastewater Treatment, pp 246–290. IWA Publishing, London (2003)

    Google Scholar 

  11. Rittmann, B.E.: The effect of shear stress on biofilm loss rate. Biotechnol. Bioeng. 24, 501–506 (1982)

    Article  Google Scholar 

  12. Rittmann, B.E, McCarty, P.L.: Environmental Biotechnology. McGraw-Hill, Boston (2001)

    Google Scholar 

  13. Solano, C., Echeverz, M., Lasa, I.: Biofilm dispersion and quorum sensing. Curr. Opin. Microbiol. 18, 96–104 (2014)

    Article  Google Scholar 

  14. Stemmons, E.D., Smith, H.L.: Competition in a chemostat with wall attachment. SIAM J. Appl. Math. 61, 567–595 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Walter, W.: Gewöhnliche Differentialgleichungen, 7th edn. Springer-Verlag, Berlin (2000)

    Book  MATH  Google Scholar 

  16. Wanner, O., Gujer, W.: A multispecies biofilm model. Biotechnol. Bioeng. 28, 314–328 (1986)

    Article  Google Scholar 

  17. Wanner, O., Eberl, H., Morgenroth, E., Noguera, D.R., Picioreanu, C., Rittmann, B., van Loosdrecht, M.: Mathematical modeling of biofilms. Scientific and Technical Report No.18. IWA Publishing, London (2006)

    Google Scholar 

  18. Xavier, J.B., Picioreanu, C., van Loosdrecht, M.C.M: A general description of detachment for multidimensional modeling of biofilms. Biotechnol. Bioeng. 91, 651–669 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

HJE was supported by NSERC Canada through the Discovery Grant Program and through the Canada Research Chairs Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann J. Eberl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Mašić, A., Eberl, H.J. (2016). A Chemostat Model with Wall Attachment: The Effect of Biofilm Detachment Rates on Predicted Reactor Performance. In: Bélair, J., Frigaard, I., Kunze, H., Makarov, R., Melnik, R., Spiteri, R. (eds) Mathematical and Computational Approaches in Advancing Modern Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-30379-6_25

Download citation

Publish with us

Policies and ethics