Skip to main content
Log in

Cross-Strain Quorum Sensing Inhibition by Staphylococcus aureus. Part 1: A Spatially Homogeneous Model

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Staphylococcus aureus uses the agr quorum sensing (QS) system to regulate reciprocally colonisation and virulence factor production. S. aureus strains can be divided into four agr groups: those within a specific agr group activate the QS systems of strains belonging to the same group, while inhibiting agr expression in strains of other groups. Furthermore, agr homologues exist in many more species of Gram-positive bacteria, raising the likelihood of cross-species interference. In principle, a non-pathogenic strain of S. aureus or other species of bacteria employing agr could be engineered to inhibit the QS systems of pathogenic strains using agr, thus down-regulating their production of virulence factors. We present three models of the agr operon belonging to strains competing for dominance, each comprising one of the three possible phosphorylation cascades governing the two component system (TCS) of the agr system. Bifurcation analyses clarify the aspects of QS most crucial in determining the efficacy of using a non-pathogenic strain for therapeutic purposes if the target TCS cascade is known and illustrate the qualitative and quantitative differences which occur as a result of mechanistic differences between the models. We highlight those results that, in concert with appropriate experimental data, would be most useful in ascertaining whether or not a classical TCS is in operation in a particular strain if this information is unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, S., & Williams, P. (2009). J. R. Soc. Interface, 6, 959–978.

    Article  Google Scholar 

  • Balagaddé, F. K., Song, H., Ozaki, J., Collins, C. H., Barnet, M., Arnold, F. H., Quake, S. R., & You, L. (2008). Mol. Syst. Biol., 4(187), 1–8.

    Google Scholar 

  • Cisar, E. A. G., Geisinger, E., Muir, T. W., & Novick, R. P. (2009). Mol. Microbiol., 74, 44–57.

    Article  Google Scholar 

  • Cooksley, C. M., Davis, I. J., Winzer, K., Chan, W. C., Peck, M. W., & Minton, N. P. (2010). Appl. Environ. Microbiol., 76, 4448–4460.

    Article  Google Scholar 

  • Gustafsson, E., Nilsson, P., Karlsson, S., & Arvidson, S. (2004). J. Mol. Microbiol. Biotechnol., 8, 232–242.

    Article  Google Scholar 

  • Jabbari, S. (2007). Mathematical modelling of quorum sensing and its inhibition. Staphylococcus aureus, PhD thesis University of Nottingham, UK.

  • Jabbari, S., King, J. R., Koerber, A. J., & Williams, P. (2010b). J. Math. Biol., 61, 17–54.

    Article  MathSciNet  MATH  Google Scholar 

  • Jabbari, S., King, J. R., & Williams, P. (2010a). Math. Biosci., 225, 115–131.

    Article  MathSciNet  MATH  Google Scholar 

  • Jabbari, S., King, J. R., & Williams, P. (2011). Bull. Math. Biol. doi:10.1007/s11538-011-9702-0.

    Google Scholar 

  • Ji, G., Beavis, R., & Novick, R. P. (1997). Science, 276, 2027–2030.

    Article  Google Scholar 

  • Kambam, P. K. R., Henson, M. A., & Sun, L. (2008). IET Syst. Biol., 2, 33–38.

    Article  Google Scholar 

  • Koenig, R. L., Ray, J. L., Maleki, S. J., Smeltzer, M. S., & Hurlburt, B. K. (2004). J. Bacteriol., 186, 7549–7555.

    Article  Google Scholar 

  • McDowell, P., Affas, Z., Reynolds, C., Holden, M. T. G., Wood, S. J., Saint, S., Cockayne, A., Hill, P. J., Dodd, C. E. R., Bycroft, B. W., Chan, W. C., & Williams, P. (2001). Mol. Microbiol., 41, 503–512.

    Article  Google Scholar 

  • Nealson, K. H., & Hastings, J. W. (1979). Microbiol. Rev., 43, 496–518.

    Google Scholar 

  • Novick, R. P. (2003). Mol. Microbiol., 48, 1429–1449.

    Article  Google Scholar 

  • Novick, R. P., Ross, H. F., Projan, S. J., Kornblum, J., Kreiswirth, B., & Moghazeh, S. (1993). EMBO J., 12, 3967–3975.

    Google Scholar 

  • Ohtani, K., Yuan, Y., Hassan, S., Wang, R., Wang, Y., & Shimizu, T. (2009). J. Bacteriol., 191, 3919–3927.

    Article  Google Scholar 

  • Otto, M., Süßmuth, R., Vuong, C., Jung, G., & Götz, F. (1999). FEBS Lett., 450, 257–262.

    Article  Google Scholar 

  • Otto, M., Echner, H., Voelter, W., & Götz, F. (2001). Infect. Immun., 69, 1957–1960.

    Article  Google Scholar 

  • Podbielski, A., & Kreikemeyer, B. (2004). Int. J. Infect. Dis. , 8, 81–95.

    Article  Google Scholar 

  • Qazi, S., Middleton, B., Muharram, S. H., Cockayne, A., Hill, P., O’Shea, P., Chhabra, S. R., Cámara, M., & Williams, P. (2006). Infect. Immun., 74, 910–919.

    Article  Google Scholar 

  • Queck, S. Y., Jameson-Lee, M., Villaruz, A. E., Bach, T. H. L., Khan, B. A., Sturdevant, D. E., Ricklefs, S. M., Li, M., & Otto, M. (2008). Mol. Cell, 32, 150–158.

    Article  Google Scholar 

  • Riedel, K., Hentzer, M., Geisenberger, O., Huber, B., Steidle, A., Wu, H., Hœiby, N., Givskov, M., Molin, S., & Eberl, L. (2001). Microbiology, 147, 3249–3262.

    Google Scholar 

  • Riedel, C. U., Monk, I. R., Casey, P. G., Waidmann, M. S., Gahan, C. G. M., & Hill, C. (2009). Mol. Microbiol., 71, 1177–1189.

    Article  Google Scholar 

  • Salmond, G. P. C., Bycroft, B. W., Stewart, G. S. A. B., & Williams, P. (1995). Mol. Microbiol., 16, 615–624.

    Article  Google Scholar 

  • Sebaihia, M., Peck, M. W., Minton, N. P., et al. (2007). Genome Res., 17, 1082–1092.

    Article  Google Scholar 

  • Stock, A. M., Robinson, V. L., & Goudreau, P. N. (2000). Annu. Rev. Biochem., 69, 183–215.

    Article  Google Scholar 

  • Williams, P., Winzer, K., Chan, W. C., & Cámara, M. (2007). Philos. Trans. R. Soc. B, 362, 1119–1134.

    Article  Google Scholar 

  • Wuster, A., & Babu, M. M. (2008). J. Bacteriol., 190, 743–746.

    Article  Google Scholar 

  • Zhang, L., Gray, L., Novick, R. P., & Ji, G. (2002). J. Biol. Chem., 277, 34736–34742.

    Article  Google Scholar 

  • Zhang, L., Lin, J., & Ji, G. (2004). J. Biol. Chem., 279, 19448–19456.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Jabbari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jabbari, S., King, J.R. & Williams, P. Cross-Strain Quorum Sensing Inhibition by Staphylococcus aureus. Part 1: A Spatially Homogeneous Model. Bull Math Biol 74, 1292–1325 (2012). https://doi.org/10.1007/s11538-011-9701-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9701-1

Keywords

Navigation