Skip to main content
Log in

The cytoplasmic loops of AgrC contribute to the quorum-sensing activity of Staphylococcus aureus

  • Microbial Pathogenesis and Host-Microbe Interaction
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

In Staphylococcus aureus, the accessory gene regulator (agr) quorum-sensing system is thought to play an important role in biofilm formation. The histidine kinase AgrC is one of the agr system components and activated by the self-generated auto-inducing peptide (AIP), which is released continuously into the extracellular environment during bacterial growth. The extracellular loops (Extra-loops) of AgrC are crucial for AIP binding. Here, we reported that the cytoplasmic loops (Cyto-loops) of AgrC are also involved in Agr activity. We identified S. aureus ST398 clinical isolates containing a naturally occurring single amino acid substitution (lysine to isoleucine) at position 73 of an AgrC Cyto-loop that exhibited significantly stronger biofilm formation and decreased Agr activity compared to the wild-type strain. A constructed strain containing the K73I point mutation in AgrC Cyto-loop continued to show a growth dependent induction of the agr system, although the growth dependent induction was delayed by about 6 h compared to the wild-type. In addition, a series of strains containing deletion mutants of the AgrC Cyto- and Extra-loops were constructed and revealed that the removal of the two Cyto-loops and Extra-loops 2 and 3 totally abolished the Agr activity and the growth-dependence on the agr system induction. Remarkably, the Extra-loop 1 deletion did not affect the Agr activity. In conclusion, the AgrC Cyto-loops play a crucial role in the S. aureus quorum-sensing activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archer, G.L. 1998. Staphylococcus aureus: a well-armed pathogen. Clin. Infect. Dis. 26, 1179–1181.

    Article  CAS  Google Scholar 

  • Bae, T. and Schneewind, O. 2006. Allelic replacement in Staphylococcus aureus with inducible counter-selection. Plasmid 55, 58–63.

    Article  CAS  Google Scholar 

  • Boles, B.R. and Horswill, A.R. 2008. agr-Mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog. 4, e1000052.

    Article  Google Scholar 

  • Botelho, A.M.N., Costa, M.O.C., Beltrame, C.O., Ferreira, F.A., Lima, N.C.B., Costa, B.S.S., de Morais, G.L., Souza, R.C., Almeida, L.G.P., Vasconcelos, A.T.R., et al. 2016. Complete genome sequence of the MRSA isolate HC1335 from ST239 lineage displaying a truncated AgrC histidine kinase receptor. Genome Biol. Evol. 8, 3187–3192.

    Article  CAS  Google Scholar 

  • Dai, Y., Liu, J., Guo, W., Meng, H., Huang, Q., He, L., Gao, Q., Lv, H., Liu, Y., Wang, Y., et al. 2019. Decreasing methicillin-resistant Staphylococcus aureus (MRSA) infections is attributable to the disappearance of predominant MRSA ST239 clones, Shanghai, 2008–2017. Emerg. Microbes Infect. 8, 471–478.

    Article  CAS  Google Scholar 

  • Felden, B., Vandenesch, F., Bouloc, P., and Romby, P. 2011. The Staphylococcus aureus RNome and its commitment to virulence. PLoS Pathog. 7, e1002006.

    Article  CAS  Google Scholar 

  • Fowler, V.G.Jr., Sakoulas, G., McIntyre, L.M., Meka, V.G., Arbeit, R.D., Cabell, C.H., Stryjewski, M.E., Eliopoulos, G.M., Reller, L.B., Corey, G.R., et al. 2004. Persistent bacteremia due to methicillin-resistant Staphylococcus aureus infection is associated with agr dysfunction and low-level in vitro resistance to thrombin-induced platelet microbicidal protein. J. Infect. Dis. 190, 1140–1149.

    Article  CAS  Google Scholar 

  • Geisinger, E., George, E.A., Muir, T.W., and Novick, R.P. 2008. Identification of ligand specificity determinants in AgrC, the Staphylococcus aureus quorum-sensing receptor. J. Biol. Chem. 283, 8930–8938.

    Article  CAS  Google Scholar 

  • Geisinger, E., Muir, T.W., and Novick, R.P. 2009. agr receptor mutants reveal distinct modes of inhibition by staphylococcal auto-inducing peptides. Proc. Natl. Acad. Sci. USA 106, 1216–1221.

    Article  CAS  Google Scholar 

  • Goerke, C., Papenberg, S.M., Dasbach, S., Dietz, K., Ziebach, R., Kahl, B.C., and Wolz, C. 2004. Increased frequency of genomic alterations in Staphylococcus aureus during chronic infection is in part due to phage mobilization. J. Infect. Dis. 189, 724–734.

    Article  CAS  Google Scholar 

  • Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166, 557–580.

    Article  CAS  Google Scholar 

  • He, L., Zheng, H.X., Wang, Y., Le, K.Y., Liu, Q., Shang, J., Dai, Y., Meng, H., Wang, X., Li, T., et al. 2018. Detection and analysis of methicillin-resistant human-adapted sequence type 398 allows insight into community-associated methicillin-resistant Staphylococcus aureus evolution. Genome Med. 10, 5.

    Article  Google Scholar 

  • Hong, X., Qin, J., Li, T., Dai, Y., Wang, Y., Liu, Q., He, L., Lu, H., Gao, Q., Lin, Y., et al. 2016. Staphylococcal protein a promotes colonization and immune evasion of the epidemic healthcare-associated MRSA ST239. Front. Microbiol. 7, 951.

    PubMed  PubMed Central  Google Scholar 

  • Jensen, R.O., Winzer, K., Clarke, S.R., Chan, W.C., and Williams, P. 2008. Differential recognition of Staphylococcus aureus quorum-sensing signals depends on both extracellular loops 1 and 2 of the transmembrane sensor AgrC. J. Mol. Biol. 381, 300–309.

    Article  CAS  Google Scholar 

  • Kashif, A., McClure, J.A., Lakhundi, S., Pham, M., Chen, S., Conly, J.M., and Zhang, K. 2019. Staphylococcus aureus ST398 virulence is associated with factors carried on prophage φSa3. Front. Microbiol. 10, 2219.

    Article  Google Scholar 

  • Koenig, R.L., Ray, J.L., Maleki, S.J., Smeltzer, M.S., and Hurlburt, B.K. 2004. Staphylococcus aureus AgrA binding to the RNAIII-agr regulatory region. J. Bacteriol. 186, 7549–7555.

    Article  CAS  Google Scholar 

  • Le, K.Y. and Otto, M. 2015. Quorum-sensing regulation in staphylococci-an overview. Front. Microbiol. 6, 1174.

    Article  Google Scholar 

  • Lina, G., Jarraud, S., Ji, G., Greenland, T., Pedraza, A., Etienne, J., Novick, R.P., and Vandenesch, F. 1998. Transmembrane topology and histidine protein kinase activity of AgrC, the agr signal receptor in Staphylococcus aureus. Mol. Microbiol. 28, 655–662.

    Article  CAS  Google Scholar 

  • Liu, Q., Cho, H., Yeo, W.S., and Bae, T. 2015. The extracytoplasmic linker peptide of the sensor protein SaeS tunes the kinase activity required for staphylococcal virulence in response to host signals. PLoS Pathog. 11, e1004799.

    Article  Google Scholar 

  • Liu, Q., Wang, X., Qin, J., Cheng, S., Yeo, W.S., He, L., Ma, X., Liu, X., Li, M., and Bae, T. 2017. The ATP-dependent protease ClpP inhibits biofilm formation by regulating Agr and cell wall hydrolase Sle1 in Staphylococcus aureus. Front. Cell. Infect. Microbiol. 7, 181.

    Article  Google Scholar 

  • Lyon, G.J. and Novick, R.P. 2004. Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides 25, 1389–1403.

    Article  CAS  Google Scholar 

  • Mairpady Shambat, S., Siemens, N., Monk, I.R., Mohan, D.B., Mukundan, S., Krishnan, K.C., Prabhakara, S., Snäll, J., Kearns, A., Vandenesch, F., et al. 2016. A point mutation in AgrC determines cytotoxic or colonizing properties associated with phenotypic variants of ST22 MRSA strains. Sci. Rep. 6, 31360.

    Article  CAS  Google Scholar 

  • Mootz, J.M., Malone, C.L., Shaw, L.N., and Horswill, A.R. 2013. Staphopains modulate Staphylococcus aureus biofilm integrity. Infect. Immun. 81, 3227–3238.

    Article  CAS  Google Scholar 

  • Novick, R.P. 2003. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol. Microbiol. 48, 14290–1449.

    Article  Google Scholar 

  • Otto, M. 2013. Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annu. Rev. Med. 64, 175–188.

    Article  CAS  Google Scholar 

  • Otto, M. 2014. Phenol-soluble modulins. Int. J. Med. Microbiol. 304, 164–169.

    Article  CAS  Google Scholar 

  • Otto, M., Echner, H., Voelter, W., and Götz, F. 2001. Pheromone cross-inhibition between Staphylococcus aureus and Staphylococcus epidermidis. Infect. Immun. 69, 1957–1960.

    Article  CAS  Google Scholar 

  • Paharik, A.E., Parlet, C.P., Chung, N., Todd, D.A., Rodriguez, E.I., Van Dyke, M.J., Cech, N.B., and Horswill, A.R. 2017. Coagulase-negative staphylococcal strain prevents Staphylococcus aureus colonization and skin infection by blocking quorum sensing. Cell Host Microbe 22, 746–756.e5.

    Article  CAS  Google Scholar 

  • Painter, K.L., Krishna, A., Wigneshweraraj, S., and Edwards, A.M. 2014. What role does the quorum-sensing accessory gene regulator system play during Staphylococcus aureus bacteremia? Trends Microbiol. 22, 676–685.

    Article  CAS  Google Scholar 

  • Schwartz, K., Syed, A.K., Stephenson, R.E., Rickard, A.H., and Boles, B.R. 2012. Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms. PLoS Pathog. 8, e1002744.

    Article  CAS  Google Scholar 

  • Shopsin, B., Drlica-Wagner, A., Mathema, B., Adhikari, R.P., Kreiswirth, B.N., and Novick, R.P. 2008. Prevalence of agr dysfunction among colonizing Staphylococcus aureus strains. J. Infect. Dis. 198, 1171–1174.

    Article  Google Scholar 

  • Smyth, D.S., Kafer, J.M., Wasserman, G.A., Velickovic, L., Mathema, B., Holzman, R.S., Knipe, T.A., Becker, K., von Eiff, C., Peters, G., et al. 2012. Nasal carriage as a source of agr-defective Staphylococcus aureus bacteremia. J. Infect. Dis. 206, 1168–1177.

    Article  Google Scholar 

  • Traber, K.E., Lee, E., Benson, S., Corrigan, R., Cantera, M., Shopsin, B., and Novick, R.P. 2008. agr function in clinical Staphylococcus aureus isolates. Microbiology 154, 2265–2274.

    Article  CAS  Google Scholar 

  • Wang, Y., Liu, Q., Liu, Q., Gao, Q., Lu, H., Meng, H., Xie, Y., Huang, Q., Ma, X., Wang, H., et al. 2018. Phylogenetic analysis and virulence determinant of the host-adapted Staphylococcus aureus lineage ST188 in China. Emerg. Microbes Infect. 7, 45.

    PubMed  PubMed Central  Google Scholar 

  • Wang, L., Quan, C., Xiong, W., Qu, X., Fan, S., and Hu, W. 2014a. New insight into transmembrane topology of Staphylococcus aureus histidine kinase AgrC. Biochim. Biophys. Acta 1838, 988–993.

    Article  CAS  Google Scholar 

  • Wang, B., Zhao, A., Novick, R.P., and Muir, T.W. 2014b. Activation and inhibition of the receptor histidine kinase AgrC occurs through opposite helical transduction motions. Mol. Cell 53, 929–940.

    Article  CAS  Google Scholar 

  • Wang, B., Zhao, A., Xie, Q., Olinares, P.D., Chait, B.T., Novick, R.P., and Muir, T.W. 2017. Functional plasticity of the AgrC receptor histidine kinase required for staphylococcal virulence. Cell Chem. Biol. 24, 76–86.

    Article  CAS  Google Scholar 

  • Yang, T., Tal-Gan, Y., Paharik, A.E., Horswill, A.R., and Blackwell, H.E. 2016. Structure-function analyses of a Staphylococcus epidermidis autoinducing peptide reveals motifs critical for AgrC-type receptor modulation. ACS Chem. Biol. 11, 1982–1991.

    Article  CAS  Google Scholar 

  • Zheng, Y., Joo, H.S., Nair, V., Le, K.Y., and Otto, M. 2018. Do amyloid structures formed by Staphylococcus aureus phenol-soluble modulins have a biological function? Int. J. Med. Microbiol. 308, 675–682.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (grant 81873957, 81671975 to ML, 81772139 to QL), Shanghai Rising-Star Program (20QA140-5900, QL), Shanghai Committee of Science and Technology (grant 20ZR1432800, QL).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qian Liu or Min Li.

Additional information

Conflict of Interest

The authors declare no conflict of interest for the manuscript.

Author Contributions

QH and YX did all the experiments except RT-PCR which was done by DC. ZY did the biofilm assay for NCTC8325. LM and LQ supervised research and wrote the manuscript. LH, HW, LM and LQ conceived the study and analyzed results. All authors read and approved the final manuscript.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q., Xie, Y., Yang, Z. et al. The cytoplasmic loops of AgrC contribute to the quorum-sensing activity of Staphylococcus aureus. J Microbiol. 59, 92–100 (2021). https://doi.org/10.1007/s12275-021-0274-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-021-0274-x

Keywords

Navigation