Skip to main content
Log in

Chemical Reaction Systems with Toric Steady States

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Mass-action chemical reaction systems are frequently used in computational biology. The corresponding polynomial dynamical systems are often large (consisting of tens or even hundreds of ordinary differential equations) and poorly parameterized (due to noisy measurement data and a small number of data points and repetitions). Therefore, it is often difficult to establish the existence of (positive) steady states or to determine whether more complicated phenomena such as multistationarity exist. If, however, the steady state ideal of the system is a binomial ideal, then we show that these questions can be answered easily. The focus of this work is on systems with this property, and we say that such systems have toric steady states. Our main result gives sufficient conditions for a chemical reaction system to have toric steady states. Furthermore, we analyze the capacity of such a system to exhibit positive steady states and multistationarity. Examples of systems with toric steady states include weakly-reversible zero-deficiency chemical reaction systems. An important application of our work concerns the networks that describe the multisite phosphorylation of a protein by a kinase/phosphatase pair in a sequential and distributive mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angeli, D., De Leenheer, P., & Sontag, E. (2007). A Petri net approach to persistence analysis in chemical reaction networks. In I. Queinnec, S. Tarbouriech, G. Garcia, & S.-I. Niculescu (Eds.), Lecture notes in control and information sciences: Vol. 357. Biology and Control Theory: Current Challenges (pp. 181–216). Berlin: Springer.

    Chapter  Google Scholar 

  • Battogtokh, D., & Tyson, J. J. (2004). Bifurcation analysis of a model of the budding yeast cell cycle. Chaos, 14(3), 653–661.

    Article  Google Scholar 

  • Chen, K. C., Calzone, L., Csikasz-Nagy, A., Cross, F. R., Novak, B., & Tyson, J. J. (2004). Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cell, 15(8), 3841–3862.

    Article  Google Scholar 

  • Conradi, C., Dickenstein, A., Pérez Millán, M., & Shiu, A. (2010). Counting positive roots of polynomials with applications for biochemical systems. In preparation.

  • Conradi, C., Flockerzi, D., & Raisch, J. (2008). Multistationarity in the activation of a MAPK: Parametrizing the relevant region in parameter space. Math. Biosci., 211(1), 105–131.

    Article  MathSciNet  MATH  Google Scholar 

  • Conradi, C., Saez-Rodriguez, J., Gilles, E.-D., & Raisch, J. (2005). Using Chemical Reaction Network Theory to discard a kinetic mechanism hypothesis. IEE Proc. Syst. Biol. (now IET Systems Biology), 152(4), 243–248.

    Google Scholar 

  • Cox, D., Little, J., & O’Shea, D. (1992). Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra. New York: Springer.

    MATH  Google Scholar 

  • Craciun, G., Dickenstein, A., Shiu, A., & Sturmfels, B. (2009). J. Symb. Comput., 44, 1551–1565.

    Article  MathSciNet  MATH  Google Scholar 

  • Deshaies, R. J., & Ferrell, J. E. (2001). Multisite phosphorylation and the countdown to S phase. Cell, 107(7), 819–822.

    Article  Google Scholar 

  • Eisenbud, D., & Sturmfels, B. (1996). Binomial ideals. Duke Math. J., 84(1), 1–45.

    Article  MathSciNet  MATH  Google Scholar 

  • Feinberg, M. (1972). Complex balancing in general kinetic systems. Arch. Ration. Mech. Anal., 49(3), 187–194.

    Article  MathSciNet  Google Scholar 

  • Feinberg, M. (1989). Necessary and sufficient conditions for detailed balancing in mass action systems of arbitrary complexity. Chem. Eng. Sci., 44(9), 1819–1827.

    Article  Google Scholar 

  • Feinberg, M. (1995a). The existence and uniqueness of steady states for a class of chemical reaction networks. Arch. Ration. Mech. Anal., 132(4), 311–370.

    Article  MathSciNet  MATH  Google Scholar 

  • Feinberg, M. (1995b). Multiple steady states for chemical reaction networks of deficiency one. Arch. Ration. Mech. Anal., 132(4), 371–406.

    Article  MathSciNet  MATH  Google Scholar 

  • Flockerzi, D., & Conradi, C. (2008). Subnetwork analysis for multistationarity in mass-action kinetics. J. Phys. Conf. Ser., 138(1), 012006.

    Article  MathSciNet  Google Scholar 

  • Gatermann, K., & Huber, B. (2002). A family of sparse polynomial systems arising in chemical reaction systems. J. Symb. Comput., 33(3), 275–305.

    Article  MathSciNet  MATH  Google Scholar 

  • Hermann-Kleiter, N., & Baier, G. (2010). NFAT pulls the strings during CD4 + T helper cell effector functions. Blood, 115(15), 2989–2997.

    Article  Google Scholar 

  • Hogan, P. G., Chen, L., Nardone, J., & Rao, A. (2003). Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev., 17(18), 2205–2232.

    Article  Google Scholar 

  • Holstein, K. (2008). Mathematische analyse der n-fachen Phosphorylierung eines Proteins: Existenz mehrfach stationärer Zustände. Master’s thesis, Diplomarbeit, Universität Magdeburg.

  • Horn, F. (1972). Necessary and sufficient conditions for complex balancing in chemical kinetics. Arch. Ration. Mech. Anal., 49(3), 172–186.

    Article  MathSciNet  Google Scholar 

  • Horn, F., & Jackson, R. (1972). General mass action kinetics. Arch. Ration. Mech. Anal., 47(2), 81–116.

    Article  MathSciNet  Google Scholar 

  • Huang, C.-Y. F., & Ferrell, J. E. (1996). Ultrasensitivity in the Mitogen-Activated Protein Kinase Cascade. Proc. Natl. Acad. Sci. USA, 93(19), 10078–10083.

    Article  Google Scholar 

  • Kapuy, O., Barik, D., Sananes, M. R.-D., Tyson, J. J., & Novák, B. (2009). Bistability by multiple phosphorylation of regulatory proteins. Prog. Biophys. Mol. Biol., 100(1–3), 47–56.

    Article  Google Scholar 

  • Macian, F. (2005). NFAT proteins: key regulators of T-cell development and function. Nat. Rev. Immunol., 5(6), 472–484.

    Article  Google Scholar 

  • Manrai, A. K., & Gunawardena, J. (2008). The geometry of multisite phosphorylation. Biophys. J., 95(12), 5533–5543.

    Article  Google Scholar 

  • Markevich, N. I., Hoek, J. B., & Kholodenko, B. N. (2004). Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J. Cell Biol., 164(3), 353–359.

    Article  Google Scholar 

  • Rockafellar, R. T. (1970). Convex analysis. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Sha, W., Moore, J., Chen, K., Lassaletta, A. D., Yi, C.-S., Tyson, J. J., & Sible, J. C. (2003). Hysteresis drives cell-cycle transitions in xenopus laevis egg extracts. Proc. Natl. Acad. Sci. USA, 100(3), 975–980.

    Article  Google Scholar 

  • Shaul, Y. D., & Seger, R. (2007). The MEK/ERK cascade: From signaling specificity to diverse functions. Biochim. Biophys. Acta, 1773(8), 1213–1226.

    Article  Google Scholar 

  • Shinar, G., & Feinberg, M. (2010). Structural sources of robustness in biochemical reaction networks. Science, 327(5971), 1389–1391.

    Article  Google Scholar 

  • Strang, G. (1976). Linear algebra and its applications. New York: Academic Press.

    MATH  Google Scholar 

  • Thomas, R., & Kaufman, M. (2001a). Multistationarity, the basis of cell differentiation and memory. I. Structural conditions of multistationarity and other nontrivial behavior. Chaos, 11(1), 170–179.

    Article  MathSciNet  MATH  Google Scholar 

  • Thomas, R., & Kaufman, M. (2001b). Multistationarity, the basis of cell differentiation and memory. II. Logical analysis of regulatory networks in terms of feedback circuits. Chaos, 11(1), 180–195.

    Article  MathSciNet  MATH  Google Scholar 

  • Thomson, M., & Gunawardena, J. (2009a). The rational parameterisation theorem for multisite post-translational modification systems. J. Theor. Biol., 261(4), 626–636.

    Article  Google Scholar 

  • Thomson, M., & Gunawardena, J. (2009b). Unlimited multistability in multisite phosphorylation systems. Nature, 460(7252), 274–277.

    Article  Google Scholar 

  • Wang, L., & Sontag, E. (2008). On the number of steady states in a multiple futile cycle. J. Math. Biol., 57(1), 29–52.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Conradi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez Millán, M., Dickenstein, A., Shiu, A. et al. Chemical Reaction Systems with Toric Steady States. Bull Math Biol 74, 1027–1065 (2012). https://doi.org/10.1007/s11538-011-9685-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9685-x

Keywords

Navigation