Skip to main content

Generalized Mass-Action Systems and Positive Solutions of Polynomial Equations with Real and Symbolic Exponents (Invited Talk)

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8660))

Included in the following conference series:

Abstract

Dynamical systems arising from chemical reaction networks with mass action kinetics are the subject of chemical reaction network theory (CRNT). In particular, this theory provides statements about uniqueness, existence, and stability of positive steady states for all rate constants and initial conditions. In terms of the corresponding polynomial equations, the results guarantee uniqueness and existence of positive solutions for all positive parameters.

We address a recent extension of CRNT, called generalized mass-action systems, where reaction rates are allowed to be power-laws in the concentrations. In particular, the (real) kinetic orders can differ from the (integer) stoichiometric coefficients. As with mass-action kinetics, complex balancing equilibria are determined by the graph Laplacian of the underlying network and can be characterized by binomial equations and parametrized by monomials. In algebraic terms, we focus on a constructive characterization of positive solutions of polynomial equations with real and symbolic exponents.

Uniqueness and existence for all rate constants and initial conditions additionally depend on sign vectors of the stoichiometric and kinetic-order subspaces. This leads to a generalization of Birch’s theorem, which is robust with respect to certain perturbations in the exponents. In this context, we discuss the occurrence of multiple complex balancing equilibria.

We illustrate our results by a running example and provide a MAPLE worksheet with implementations of all algorithmic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrovic, D., Verschelde, J.: A polyhedral method to compute all affine solution sets of sparse polynomial systems (2013), http://arxiv.org/abs/1310.4128, arXiv:1310.4128 [cs.SC]

    Google Scholar 

  2. Bachem, A., Kern, W.: Linear programming duality. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  3. Basu, S., Pollack, R., Roy, M.F.: Algorithms in real algebraic geometry, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  4. Ben-Israel, A., Greville, T.N.E.: Generalized inverses, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  5. Birch, M.W.: Maximum likelihood in three-way contingency tables. J. Roy. Statist. Soc. Ser. B 25, 220–233 (1963)

    MATH  MathSciNet  Google Scholar 

  6. Björner, A., Las Vergnas, M., Sturmfels, B., White, N., Ziegler, G.M.: Oriented matroids, 2nd edn. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  7. Boulier, F., Lemaire, F., Petitot, M., Sedoglavic, A.: Chemical reaction systems, computer algebra and systems biology. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2011. LNCS, vol. 6885, pp. 73–87. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Brualdi, R.A., Ryser, H.J.: Combinatorial matrix theory. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  9. Conradi, C., Flockerzi, D., Raisch, J.: Multistationarity in the activation of a MAPK: parametrizing the relevant region in parameter space. Math. Biosci. 211, 105–131 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  10. Corless, R.M., Jeffrey, D.J.: The turing factorization of a rectangular matrix. SIGSAM Bull. 31, 20–30 (1997)

    Article  Google Scholar 

  11. Corless, R.M., Jeffrey, D.J.: Linear Algebra in Maple. In: CRC Handbook of Linear Algebra, 2nd edn. Chapman and Hall/CRC (2013)

    Google Scholar 

  12. Craciun, G., Dickenstein, A., Shiu, A., Sturmfels, B.: Toric dynamical systems. J. Symbolic Comput. 44, 1551–1565 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dickenstein, A.: A world of binomials. In: Foundations of Computational Mathematics, Hong Kong, pp. 42–67. Cambridge Univ. Press, Cambridge (2009)

    Google Scholar 

  14. Errami, H., Seiler, W.M., Eiswirth, M., Weber, A.: Computing Hopf bifurcations in chemical reaction networks using reaction coordinates. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp. 84–97. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Feinberg, M.: Complex balancing in general kinetic systems. Arch. Rational Mech. Anal. 49, 187–194 (1972)

    Article  MathSciNet  Google Scholar 

  16. Feinberg, M.: Lectures on chemical reaction networks (1979), http://crnt.engineering.osu.edu/LecturesOnReactionNetworks

  17. Feinberg, M.: Chemical reaction network structure and the stability of complex isothermal reactors–I. The deficiency zero and deficiency one theorems. Chem. Eng. Sci. 42, 2229–2268 (1987)

    Article  Google Scholar 

  18. Feinberg, M.: Chemical reaction network structure and the stability of complex isothermal reactors–II. Multiple steady states for networks of deficiency one. Chem. Eng. Sci. 43, 1–25 (1988)

    Article  Google Scholar 

  19. Feinberg, M.: The existence and uniqueness of steady states for a class of chemical reaction networks. Arch. Rational Mech. Anal. 132, 311–370 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. Feinberg, M.: Multiple steady states for chemical reaction networks of deficiency one. Arch. Rational Mech. Anal. 132, 371–406 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. Feinberg, M., Horn, F.J.M.: Chemical mechanism structure and the coincidence of the stoichiometric and kinetic subspaces. Arch. Rational Mech. Anal. 66, 83–97 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  22. Fienberg, S.E.: Introduction to Birch (1963) Maximum likelihood in three-way contingency tables. In: Kotz, S., Johnson, N.L. (eds.) Breakthroughs in statistics, vol. II, pp. 453–461. Springer, New York (1992)

    Chapter  Google Scholar 

  23. Fulton, W.: Introduction to toric varieties. Princeton University Press, Princeton (1993)

    Google Scholar 

  24. Gatermann, K., Wolfrum, M.: Bernstein’s second theorem and Viro’s method for sparse polynomial systems in chemistry. Adv. in Appl. Math. 34, 252–294 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Gatermann, K.: Counting stable solutions of sparse polynomial systems in chemistry. In: Symbolic Computation: Solving Equations in Algebra, Geometry, and Engineering, pp. 53–69. Amer. Math. Soc., Providence (2001)

    Chapter  Google Scholar 

  26. Gatermann, K., Eiswirth, M., Sensse, A.: Toric ideals and graph theory to analyze Hopf bifurcations in mass action systems. J. Symbolic Comput. 40, 1361–1382 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Gatermann, K., Huber, B.: A family of sparse polynomial systems arising in chemical reaction systems. J. Symbolic Comput. 33, 275–305 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  28. Gopalkrishnan, M., Miller, E., Shiu, A.: A Geometric Approach to the Global Attractor Conjecture. SIAM J. Appl. Dyn. Syst. 13, 758–797 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  29. Grigoriev, D., Weber, A.: Complexity of solving systems with few independent monomials and applications to mass-action kinetics. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp. 143–154. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  30. Gunawardena, J.: Chemical reaction network theory for in-silico biologists (2003), http://vcp.med.harvard.edu/papers/crnt.pdf

  31. Gunawardena, J.: A linear framework for time-scale separation in nonlinear biochemical systems. PLoS ONE 7, e36321 (2012)

    Google Scholar 

  32. Horn, F.: Necessary and sufficient conditions for complex balancing in chemical kinetics. Arch. Rational Mech. Anal. 49, 172–186 (1972)

    Article  MathSciNet  Google Scholar 

  33. Horn, F., Jackson, R.: General mass action kinetics. Arch. Rational Mech. Anal. 47, 81–116 (1972)

    Article  MathSciNet  Google Scholar 

  34. Johnston, M.D.: Translated Chemical Reaction Networks. Bull. Math. Biol. 76(5), 1081–1116 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  35. Jungnickel, D.: Graphs, networks and algorithms, 4th edn. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  36. Lemaire, F., Ürgüplü, A.: MABSys: Modeling and analysis of biological systems. In: Horimoto, K., Nakatsui, M., Popov, N. (eds.) ANB 2010. LNCS, vol. 6479, pp. 57–75. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  37. Mirzaev, I., Gunawardena, J.: Laplacian dynamics on general graphs. Bull. Math. Biol. 75, 2118–2149 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  38. Mnëv, N.E.: The universality theorems on the classification problem of configuration varieties and convex polytopes varieties. In: Topology and geometry—Rohlin Seminar. Lecture Notes in Math., vol. 1346, pp. 527–543. Springer, Berlin (1988)

    Chapter  Google Scholar 

  39. Müller, S., Feliu, E., Regensburger, G., Conradi, C., Shiu, A., Dickenstein, A.: Sign conditions for injectivity of generalized polynomial maps with applications to chemical reaction networks and real algebraic geometry (2013) (submitted), http://arxiv.org/abs/1311.5493, arXiv:1311.5493 [math.AG]

    Google Scholar 

  40. Müller, S., Regensburger, G.: Generalized mass action systems: Complex balancing equilibria and sign vectors of the stoichiometric and kinetic-order subspaces. SIAM J. Appl. Math. 72, 1926–1947 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  41. Pachter, L., Sturmfels, B.: Statistics. In: Algebraic statistics for computational biology, pp. 3–42. Cambridge Univ. Press, New York (2005)

    Chapter  Google Scholar 

  42. Pérez Millán, M., Dickenstein, A., Shiu, A., Conradi, C.: Chemical reaction systems with toric steady states. Bull. Math. Biol. 74, 1027–1065 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  43. Rambau, J.: TOPCOM: triangulations of point configurations and oriented matroids. In: Mathematical Software (Beijing 2002), pp. 330–340. World Sci. Publ, River Edge (2002)

    Google Scholar 

  44. Richter-Gebert, J., Ziegler, G.M.: Oriented matroids. In: Handbook of Discrete and Computational Geometry, pp. 111–132. CRC, Boca Raton (1997)

    Google Scholar 

  45. Samal, S.S., Errami, H., Weber, A.: PoCaB: A software infrastructure to explore algebraic methods for bio-chemical reaction networks. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp. 294–307. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  46. Savageau, M.A.: Biochemical systems analysis: II. The steady state solutions for an n-pool system using a power-law approximation. J. Theor. Biol. 25, 370–379 (1969)

    Article  Google Scholar 

  47. Thomson, M., Gunawardena, J.: The rational parameterisation theorem for multisite post-translational modification systems. J. Theoret. Biol. 261, 626–636 (2009)

    Article  MathSciNet  Google Scholar 

  48. Voit, E.O.: Biochemical systems theory: A review. In: ISRN Biomath. 2013, 897658 (2013)

    Google Scholar 

  49. Zeilberger, D.: A combinatorial approach to matrix algebra. Discrete Math. 56, 61–72 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  50. Ziegler, G.M.: Lectures on polytopes. Springer, New York (1995)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Müller, S., Regensburger, G. (2014). Generalized Mass-Action Systems and Positive Solutions of Polynomial Equations with Real and Symbolic Exponents (Invited Talk). In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2014. Lecture Notes in Computer Science, vol 8660. Springer, Cham. https://doi.org/10.1007/978-3-319-10515-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10515-4_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10514-7

  • Online ISBN: 978-3-319-10515-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics