Skip to main content

Advertisement

Log in

Temporal Profile of Gene Transcription Noise Modulated by Cross-Talking Signal Transduction Pathways

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Gene transcription is a central cellular process and is stochastic in nature. The stochasticity has been studied in real cells and in theory, but often for the transcription activated by a single signaling pathway at steady-state. As transcription of many genes is involved with multiple pathways, we investigate how the transcription efficiency and noise is modulated by cross-talking pathways. We model gene transcription as a renewal process for which the gene can be turned on by different pathways. We determine the transcription efficiency by solving a system of differential equations, and obtain the mathematical formula of the noise strength by the Laplace transform and standard techniques in renewal theory. Our numerical examples demonstrate that cross-talking pathways are capable of inducing more cells to transcribe than the steady-state level after a short time period of signal transduction, and creating exceedingly high stationary transcription noise strength. In contrast, it is shown that one signaling pathway alone is unable to do so. Very strikingly, it is observed that the noise strength varies gradually over most values of the system parameters, but changes abruptly over a narrow range in the neighborhoods of some critical parameter values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguirre, A., Rubio, M. E., & Gallo, V. (2010). Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature, 467, 323–327.

    Article  Google Scholar 

  • Blake, W. J., Kaern, M., Cantor, C. R., & Collins, J. J. (2003). Noise in eukaryotic gene expression. Nature, 422, 633–637.

    Article  Google Scholar 

  • Chubb, J. R., Trcek, T., Shenoy, S. M., & Singer, R. H. (2006). Transcriptional pulsing of a developmental gene. Curr. Biol., 16, 1018–1025.

    Article  Google Scholar 

  • Core, L. J., & Lis, J. T. (2008). Transcription regulation through promoter-proximal pausing of RNA polymerase II. Science, 319, 1791–1792.

    Article  Google Scholar 

  • Elowitz, M. B., Levine, A. J., Siggia, E. D., & Swain, P. S. (2002). Stochastic gene expression in a single cell. Science, 297, 1183–1186.

    Article  Google Scholar 

  • Felmer, P. L., Quaas, A., Tang, M., & Yu, J. (2009). Random dynamics of gene transcription activation in single cells. J. Differ. Equ., 247, 1796–1816.

    Article  MathSciNet  MATH  Google Scholar 

  • Golding, I., Paulsson, J., Zawilski, S. M., & Cox, E. C. (2005). Real-time kinetics of gene activity in individual bacteria. Cell, 123, 1025–1036.

    Article  Google Scholar 

  • Grimmett, G., & Stirzaker (2001). Probability and random processes (3rd edn.). London: Oxford University Press.

    Google Scholar 

  • Hirsch, M. W., Smale, S., & Devaney, R. (2003). Differential equations, dynamical systems, and an introduction to chaos (2nd edn.). San Diego: Academic Press.

    Google Scholar 

  • Kaern, M., Elston, T. C., Blake, W. J., & Collins, J. J. (2005). Stochasticity in gene expression: from theories to phenotypes. Nat. Rev. Genet., 6, 451–464.

    Article  Google Scholar 

  • Karlin, S., & Taylor, H. M. (1975). A first course in stochastic processes (2nd edn.). San Diego: Academic Press.

    MATH  Google Scholar 

  • Kaufmann, B. B., & van Oudenaarden, A. (2007). Stochastic gene expression: from single molecules to the proteome. Curr. Opin. Genet. Dev., 17, 107–112.

    Article  Google Scholar 

  • Ko, M. S. (1991). A stochastic model for gene induction. J. Theor. Biol., 153, 181–194.

    Article  Google Scholar 

  • Latchman, D. S. (2008). Eukaryotic transcription factors (5th edn.). San Diego: Academic Press.

    Google Scholar 

  • Lei, J. (2009). Stochasticity in single gene expression with both intrinsic and extrinsic noise and fluctuation in kinetic parameters. J. Theor. Biol., 256, 485–492.

    Article  Google Scholar 

  • Lemaitre, B., & Hoffmann, J. (2007). The Host Defense of Drosophila melanogaster. Annu. Rev. Immunol., 25, 697–743.

    Article  Google Scholar 

  • Paulsson, J. (2004). Summing up the noise in gene networks. Nature, 427, 415–418.

    Article  Google Scholar 

  • Raj, A., Peskin, C. S., Tranchina, D., Vargas, D. Y., & Tyagi, S. (2006). Stochastic mRNA synthesis in mammalian cells. PLoS Biol., 4, 1707–1719.

    Article  Google Scholar 

  • Raj, A., Rifkin, S. A., Andersen, E., & van Oudenaarden, A. (2010). Variability in gene expression underlies incomplete penetrance. Nature, 463, 913–918.

    Article  Google Scholar 

  • Sun, Q., Tang, M., & Yu, J. (2011). Modulation of gene transcription noise by competing transcription factors. J. Math. Biol. doi:10.1007/s00285-011-0420-x.

    Google Scholar 

  • Tang, M. (2008). The mean and noise of stochastic gene transcription. J. Theor. Biol., 253, 271–280.

    Article  Google Scholar 

  • Tang, M. (2010). The mean frequency of transcriptional bursting and its variation in single cells. J. Math. Biol., 60, 27–58.

    Article  MathSciNet  Google Scholar 

  • Taniguchi, Y., Choi, P. J., Li, G. W., Chen, H., Babu, M., Hearn, J., Emili, A., & Xie, X. S., (2010). Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science, 329, 533–538.

    Article  Google Scholar 

  • Tanji, T., Hu, X., Weber, A. N. R., & Ip, T. (2007). Toll and IMD pathways synergistically activate an innate immune response in Drosophila melanogaster. Mol. Cell. Biol., 27, 4578–4588.

    Article  Google Scholar 

  • Yoo, A. S., Bais, C., & Greenwald, I. (2004). Crosstalk between the EGFR and LIN-12/Notch pathways in C. elegans vulval development. Science, 303, 663–666.

    Article  Google Scholar 

  • Zeitlinger, J., Stark, A., Kellis, M., Hong, J. W., Nechaev, S., Adelman, K., Levine, M., & Young, R. A. (2007). RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nat. Genet., 39, 1512–1516.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianshe Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Q., Tang, M. & Yu, J. Temporal Profile of Gene Transcription Noise Modulated by Cross-Talking Signal Transduction Pathways. Bull Math Biol 74, 375–398 (2012). https://doi.org/10.1007/s11538-011-9683-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9683-z

Keywords

Navigation