Skip to main content
Log in

Autonomous Synchronization of Chemically Coupled Synthetic Oscillators

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Synthetic biology has recently provided functional single-cell oscillators. With a few exceptions, however, synchronization across a population has not been achieved yet. In particular, designing a cell coupling mechanism to achieve autonomous synchronization is not straightforward since there are usually several different design alternatives. Here, we propose a method to mathematically predict autonomous synchronization properties, and to identify the network structure with the best performance, thus increasing the feasibility for a successful implementation in vivo.

Our method relies on the reduction of ODE-based models for synthetic oscillators to a phase description, and the subsequent analysis of the phase model either in the spatially homogeneous or heterogeneous case. This analysis identifies three major factors determining if and when autonomous synchronization can be achieved, namely cell density, cell to cell variability, and structural design decisions. Moreover, when considering a spatially heterogeneous medium, we observe phase waves. These waves may hinder synchronization substantially, and their suppression should be considered in the design process.

In contrast to previous work, we analyze the synchronization process of models of experimentally validated synthetic oscillators in mammalian cells. Alternative designs for cell-to-cell communication via a quorum sensing mechanism differ in few mechanistic details, but these differences have important implications for autonomous synchronization. Our analysis suggests that not only the periodical transcription of the protein producing the signaling molecule, but also of the receptor protein is necessary to achieve good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acheson, D. J. (1990). Elementary fluid dynamics. London: Oxford University Press.

    MATH  Google Scholar 

  • Atkinson, M. R., Savageau, M. A., Myers, J. T., & Ninfa, A. J. (2003). Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell, 113, 597–607.

    Article  Google Scholar 

  • Brown, E., Moehlis, J., & Holmes, P. (2004). On the phase reduction and response dynamics of neural oscillator populations. Neural Comput., 16, 673–715.

    Article  MATH  Google Scholar 

  • Daniels, B. C. (2005). Synchronization of globally coupled nonlinear oscillators: the rich behavior of the Kuramoto model. Technical report, Ohio Wesleyan University.

  • Danino, T., Mondragon-Palomino, O., Tsimring, L., & Hasty, J. (2010). A synchronized quorum of genetic clocks. Nature, 463, 326–330.

    Article  Google Scholar 

  • Elowitz, M. B., & Leibler, S. (2000). A synthetic oscillatory network of transcriptional regulators. Nature, 403, 335–338.

    Article  Google Scholar 

  • Ferziger, J. H., & Peric, M. (1999). Computational methods for fluid dynamics (2nd ed.). Berlin: Springer.

    MATH  Google Scholar 

  • Fung, E., Wong, W. W., Suen, J. K., Bulter, T., Lee, S., & Liao, J. C. (2008). A synthetic gene-metabolic oscillator. Nature, 435, 118–122.

    Article  Google Scholar 

  • Garcia-Ojalvo, J., Elowitz, M. B., & Strogatz, S. H. (2004). Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing. Proc. Natl. Acad. Sci., 101(30), 10955–10960.

    Article  MathSciNet  MATH  Google Scholar 

  • Gonze, D., Bernard, S., Waltermann, C., Kramer, A., & Herzel, H. (2005). Spontaneous synchronization of coupled circadian oscillators. Biophys. J., 89, 120–129.

    Article  Google Scholar 

  • Goryachev, A. B., Toh, D. J., & Lee, T. (2006). Systems analysis of a quorum sensing network: design constraints imposed by the functional requirements, network topology and kinetic constants. Biosystems, 83, 178–187.

    Article  Google Scholar 

  • Koseska, A., Volkov, E., Zaikin, A., & Kurths, J. (2007a). Inherent multistability in arrays of autoinducer coupled genetic oscillators. Phys. Rev. E, 75, 031916–1–031916–8.

    Google Scholar 

  • Koseska, A., Zaikin, A., Garcia-Ojalvo, J., & Kurths, J. (2007b). Stochastic suppression of gene expression oscillators under intercell coupling. Phys. Rev. E, 75, 031917–1–031917–9.

    Google Scholar 

  • Kuramoto, Y. (1984). Chemical oscillations, waves and turbulence. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Kuramoto, Y., & Nishikawa, I. (1987). Statistical macrodynamics of large dynamical systems. Case of a phase transition in oscillator communities. J. Stat. Phys., 49, 569–605.

    Article  MathSciNet  MATH  Google Scholar 

  • Kuznetsov, A., Kaern, M., & Kopell, N. (2004). Synchrony in a population of hysteresis-based genetic oscillators. SIAM J. Appl. Math., 65(2), 392–425.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, C., Chen, L., & Aihara, K. (2007). Stochastic synchronization of genetic oscillator networks. BMC Systems Biology, 1(6).

  • Locke, J. C. W., Westermark, P. O., Kramer, A., & Herzel, H. (2008). Global parameter search reveals design principles of the mammalian circadian clock. BMC Systems Biology, 2(22).

  • McMillen, D., Kopell, N., Hasty, J., & Collins, J. J. (2002). Synchronizing genetic relaxation oscillators by intercell signaling. Proc. Natl. Acad. Sci., 99(2), 679–684.

    Article  Google Scholar 

  • Misra, J. C., & Mitra, A. (2008). Synchronization among tumour-like cell aggregations coupled by quorum sensing: a theoretical study. Comput. Math. Appl., 55, 1842–1853.

    Article  MathSciNet  MATH  Google Scholar 

  • Müller, J., Kuttler, C., Hense, B. A., Rothballer, M., & Hartmann, A. (2006). Cell–cell communication by quorum sensing and dimension-reduction. J. Math. Biol., 53, 672–702.

    Article  MathSciNet  MATH  Google Scholar 

  • Patankar, S. V., & Spalding, D. B. (1971). A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transf., 15, 1787–1806.

    Article  Google Scholar 

  • Preitner, N., Damiola, F., Lopez-Molina, L., Zakany, J., Duboule, D., Albrecht, U., & Schibler, U. (2002). The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell, 110, 251–260.

    Article  Google Scholar 

  • Rosenblum, M., Pikovsky, A., Kurths, J., Schafer, C., & Tass, P. A. (2001). Handbook of biological physics (Vol. 4, pp. 279–321). Amsterdam: Elsevier. Chapter 9.

    Google Scholar 

  • Russo, G., & di Bernardo, M. (2009). How to synchronize biological clocks. J. Comput. Biol., 16(2), 379–393.

    Article  MathSciNet  Google Scholar 

  • Sewell, G. (2005). The numerical solution of ordinary and partial differential equations. New York: Wiley.

    Book  MATH  Google Scholar 

  • Shiner, E., Reddy, S., Timmons, C., Guigen, L., Williams, S., & Rumbaugh, K. (2004). Construction of a bacterial autoinducer detection system in mammalian cells. Biol. Proced. Online, 6(1), 268–276.

    Article  Google Scholar 

  • Stricker, J., Cookson, S., Bennett, M. R., Mather, W. H., Tsimring, L. S., & Hasty, J. (2008). A fast, robust and tunable synthetic gene oscillator. Nature, 456, 516–520.

    Article  Google Scholar 

  • Strogatz, S. H. (2000). From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D, 143, 1–20.

    Article  MathSciNet  MATH  Google Scholar 

  • Taylor, A. F., Tinsley, M. R., Wang, F., Huang, Z., & Showalter, K. (2009). Dynamical quorum sensing and synchronization in large populations of chemical oscillators. Science, 323, 614–617.

    Article  Google Scholar 

  • Tigges, M., Marquez-Lago, T. T., Stelling, J., & Fussenegger, M. (2009). A tunable synthetic mammalian oscillator. Nature, 457, 309–312.

    Article  Google Scholar 

  • Wang, W., & Slotine, J. J. (2005). On partial contraction analysis for coupled nonlinear oscillators. Biol. Cybern., 92(1), 38–53.

    Article  MathSciNet  MATH  Google Scholar 

  • Waters, C. M., & Bassler, B. L. (2005). Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol., 21, 319–346.

    Article  Google Scholar 

  • Winfree, A. T. (1967). Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol., 16, 15–42.

    Article  Google Scholar 

  • Zhou, T., Zhang, J., Yuan, Z., & Chen, L. (2008). Synchronization of genetic oscillators. Chaos, 18, 037126-1–037126-20.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Moritz Lang or Tatiana T. Marquez-Lago.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

(PDF 2.626 kB)

AHL During Synchronization (MOV 14.525 kB)

Phases During Synchronization (MOV 3.338 kB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, M., Marquez-Lago, T.T., Stelling, J. et al. Autonomous Synchronization of Chemically Coupled Synthetic Oscillators. Bull Math Biol 73, 2678–2706 (2011). https://doi.org/10.1007/s11538-011-9642-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9642-8

Keywords

Navigation