Skip to main content
Log in

Adaptive Dynamics of Altruistic Cooperation in a Metapopulation: Evolutionary Emergence of Cooperators and Defectors or Evolutionary Suicide?

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We investigate the evolution of public goods cooperation in a metapopulation model with small local populations, where altruistic cooperation can evolve due to assortment and kin selection, and the evolutionary emergence of cooperators and defectors via evolutionary branching is possible. Although evolutionary branching of cooperation has recently been demonstrated in the continuous snowdrift game and in another model of public goods cooperation, the required conditions on the cost and benefit functions are rather restrictive, e.g., altruistic cooperation cannot evolve in a defector population. We also observe selection for too low cooperation, such that the whole metapopulation goes extinct and evolutionary suicide occurs. We observed intuitive effects of various parameters on the numerical value of the monomorphic singular strategy. Their effect on the final coexisting cooperator–defector pair is more complex: changes expected to increase cooperation decrease the strategy value of the cooperator. However, at the same time the population size of the cooperator increases enough such that the average strategy does increase. We also extend the theory of structured metapopulation models by presenting a method to calculate the fitness gradient in a general class of metapopulation models, and try to make a connection with the kin selection approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alizon, S., & Taylor, P. (2008). Empty sites can promote altruistic behavior. Evolution, 62, 1335–1344.

    Article  Google Scholar 

  • Allee, W. C., Emerson, A., Park, T., & Schmidt, K. (1949). Principles of animal ecology. Philadelphia: Saunders.

    Google Scholar 

  • Brännström, Å., & Dieckmann, U. (2005). Evolutionary dynamics of altruism and cheating among social amoebas. Proc. R. Soc. Lond. B, 272, 1609–1616.

    Article  Google Scholar 

  • Doebeli, M., Hauert, C., & Killingback, T. (2004). The evolutionary origin of cooperators and defectors. Science, 306, 859–862.

    Article  Google Scholar 

  • Doebeli, M., & Ruxton, G. D. (1997). Evolution of dispersal rates in metapopulation models: branching and cyclic dynamics in phenotype space. Evolution, 51, 1730–1741.

    Article  Google Scholar 

  • Eshel, I. (1983). Evolutionary and continuous stability. J. Theor. Biol., 103, 99–111.

    Article  MathSciNet  Google Scholar 

  • Faddeev, D. K., & Faddeeva, V. N. (1963). Computational methods of linear algebra. San Francisco: Freeman.

    Google Scholar 

  • Ferrière, R. (2000). Adaptive responses to environmental threats: evolutionary suicide, insurance, and rescue. In Options, Spring 2000 (pp. 12–16). Laxenburg: IIASA.

    Google Scholar 

  • Geritz, S. A. H., Kisdi, É., Meszéna, G., & Metz, J. A. J. (1998). Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol., 12, 35–57.

    Article  Google Scholar 

  • Geritz, S. A. H., Metz, J. A. J., Kisdi, É., & Meszéna, G. (1997). Dynamics of adaptation and evolutionary branching. Phys. Rev. Lett., 78, 2024–2027.

    Article  Google Scholar 

  • Geritz, S. A. H., van der Meijden, E., & Metz, J. A. J. (1999). Evolutionary dynamics of seed size and seedling competitive ability. Theor. Popul. Biol., 55, 324–343.

    Article  MATH  Google Scholar 

  • Grafen, A. (1985). A geometric view of relatedness. Oxf. Surv. Evol. Biol., 2, 28–89.

    Google Scholar 

  • Griffin, A., West, S., & Buckling, A. (2004). Cooperation and competition in pathogenic bacteria. Nature, 430, 1024–1027.

    Article  Google Scholar 

  • Gyllenberg, M., & Metz, J. A. J. (2001). On fitness in structured metapopulations. J. Math. Biol., 43, 545–560.

    Article  MathSciNet  MATH  Google Scholar 

  • Gyllenberg, M., & Parvinen, K. (2001). Necessary and sufficient conditions for evolutionary suicide. Bull. Math. Biol., 63, 981–993.

    Article  Google Scholar 

  • Gyllenberg, M., Parvinen, K., & Dieckmann, U. (2002). Evolutionary suicide and evolution of dispersal in structured metapopulations. J. Math. Biol., 45, 79–105.

    Article  MathSciNet  MATH  Google Scholar 

  • Hamilton, W. D. (1964a). The genetical evolution of social behaviour i. J. Theor. Biol., 7, 1–16.

    Article  Google Scholar 

  • Hamilton, W. D. (1964b). The genetical evolution of social behaviour ii. J. Theor. Biol., 7, 17–52.

    Article  Google Scholar 

  • Hardin, G. (1968). The tragedy of the commons. Science, 162, 1243–1248.

    Article  Google Scholar 

  • Harrison, F., & Buckling, A. (2009). Cooperative production of siderophores by Pseudomonas aeruginosa. Front. Biosci., 14, 4113–4126.

    Article  Google Scholar 

  • Hauert, C. (2006). Cooperation, collectives formation and specialization. Adv. Complex Syst., 9, 315–335.

    Article  MATH  Google Scholar 

  • Hauert, C., Holmes, M., & Doebeli, M. (2006). Evolutionary games and population dynamics: maintenance of cooperation in public goods games. Proc. R. Soc. Lond. B, 273, 2565–2570.

    Article  Google Scholar 

  • Hauert, C., Traulsen, A., Brandt, H., Nowak, M. A., & Sigmund, K. (2007). Via freedom to coercion: the emergence of costly punishment. Science, 316, 1905–1907.

    Article  MathSciNet  Google Scholar 

  • Jansen, V. A. A., & van Baalen, M. (2006). Altruism through beard chromodynamics. Nature, 440, 663–666.

    Article  Google Scholar 

  • Kemeny, J. G., & Snell, J. (1960). Finite Markov chains. Princeton: Van Nostrand.

    MATH  Google Scholar 

  • Kuemmerli, R., Griffin, A. S., West, S. A., Buckling, A., & Harrison, F. (2009). Viscous medium promotes cooperation in the pathogenic bacterium Pseudomonas aeruginosa. Proc. R. Soc. Lond. B, 276, 3531–3538.

    Article  Google Scholar 

  • Le Galliard, J.-F., Ferriére, R., & Dieckmann, U. (2003). The adaptive dynamics of altruism in spatially heterogeneous populations. Evolution, 57, 1–17.

    Google Scholar 

  • Levins, R. (1969). Some demographic and genetic consequenses of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am., 15, 237–240.

    Google Scholar 

  • Levins, R. (1970). Extinction. In M. Gerstenhaber (Ed.), Some mathematical problems in biology (pp. 77–107). Providence: American Mathematical Society.

    Google Scholar 

  • Mathias, A., Kisdi, É., & Olivieri, I. (2001). Divergent evolution of dispersal in a heterogeneous landscape. Evolution, 55, 246–259.

    Google Scholar 

  • Matsuda, H. (1985). Evolutionarily stable strategies for predator switching. J. Theor. Biol., 115, 351–366.

    Article  MathSciNet  Google Scholar 

  • Matsuda, H., & Abrams, P. A. (1994). Timid consumers: self-extinction due to adaptive change in foraging and anti-predator effort. Theor. Popul. Biol., 45, 76–91.

    Article  MATH  Google Scholar 

  • Maynard Smith, J. (1976). Evolution and the theory of games. Am. Sci., 64, 41–45.

    Google Scholar 

  • Metz, J. A. J., Geritz, S. A. H., Meszéna, G., Jacobs, F. J. A., & van Heerwaarden, J. S. (1996). Adaptive dynamics, a geometrical study of the consequenses of nearly faithful reproduction. In S. J. van Strien & S. M. Verduyn Lunel (Eds.), Stochastic and spatial structures of dynamical systems (pp. 183–231). Amsterdam: North-Holland.

    Google Scholar 

  • Metz, J. A. J., & Gyllenberg, M. (2001). How should we define fitness in structured metapopulation models? Including an application to the calculation of ES dispersal strategies. Proc. R. Soc. Lond. B, 268, 499–508.

    Article  Google Scholar 

  • Metz, J. A. J., Nisbet, R. M., & Geritz, S. A. H. (1992). How should we define “fitness” for general ecological scenarios? Trends Ecol. Evol., 7, 198–202.

    Article  Google Scholar 

  • Nowak, M. A., & Sigmund, K. (2005). Evolution of indirect reciprocity. Nature, 437, 1291–1298.

    Article  Google Scholar 

  • Nurmi, T., & Parvinen, K. (2008). On the evolution of specialization with a mechanistic underpinning in structured metapopulations. Theor. Popul. Biol., 73, 222–243.

    Article  MATH  Google Scholar 

  • Nurmi, T., & Parvinen, K. (2011). Joint evolution of specialization and dispersal in structured metapopulations. J. Theor. Biol., 275, 78–92. doi:10.1016/j.jtbi.2011.01.023.

    Article  Google Scholar 

  • Ohtsuki, H., & Iwasa, Y. (2006). The leading eight: social norms that can maintain cooperation by indirect reciprocity. J. Theor. Biol., 239, 435–444.

    Article  MathSciNet  Google Scholar 

  • Parvinen, K. (1999). Evolution of migration in a metapopulation. Bull. Math. Biol., 61, 531–550.

    Article  Google Scholar 

  • Parvinen, K. (2002). Evolutionary branching of dispersal strategies in structured metapopulations. J. Math. Biol., 45, 106–124.

    Article  MathSciNet  MATH  Google Scholar 

  • Parvinen, K. (2005). Evolutionary suicide. Acta Biotheor., 53, 241–264.

    Article  Google Scholar 

  • Parvinen, K. (2006). Evolution of dispersal in a structured metapopulation model in discrete time. Bull. Math. Biol., 68, 655–678.

    Article  MathSciNet  Google Scholar 

  • Parvinen, K. (2007). Evolutionary suicide in a discrete-time metapopulation model. Evol. Ecol. Res., 9, 619–633.

    Google Scholar 

  • Parvinen, K. (2010). Adaptive dynamics of cooperation may prevent the coexistence of defectors and cooperators and even cause extinction. Proc. R. Soc. Lond. B, 277, 2493–2501.

    Article  Google Scholar 

  • Parvinen, K., Dieckmann, U., Gyllenberg, M., & Metz, J. A. J. (2003). Evolution of dispersal in metapopulations with local density dependence and demographic stochasticity. J. Evol. Biol., 16, 143–153.

    Article  Google Scholar 

  • Parvinen, K., & Egas, M. (2004). Dispersal and the evolution of specialisation in a two-habitat type metapopulation. Theor. Popul. Biol., 66, 233–248.

    Article  Google Scholar 

  • Parvinen, K., & Metz, J. A. J. (2008). A novel fitness proxy in structured locally finite metapopulations with diploid genetics, with an application to dispersal evolution. Theor. Popul. Biol., 73, 517–528.

    Article  MATH  Google Scholar 

  • Queller, D. C. (1994). Genetic relatedness in viscous populations. Evol. Ecol., 8, 70–73.

    Article  Google Scholar 

  • Racey, D., Inglis, R. F., Harrison, F., Oliver, A., & Buckling, A. (2010). The effect of elevated mutation rates on the evolution of cooperation and virulence of Pseudomonas aeruginosa. Evolution, 64, 515–521.

    Article  Google Scholar 

  • Rankin, D. J., & López-Sepulcre, A. (2005). Can adaptation lead to extinction? Oikos, 111, 616–619.

    Article  Google Scholar 

  • Ross-Gillespie, A., Gardner, A., Buckling, A., West, S. A., & Griffin, A. S. (2009). Density dependence and cooperation: theory and a test with bacteria. Evolution, 63, 2315–2325.

    Article  Google Scholar 

  • Taylor, P. D. (1992). Altruism in viscous populations—an inclusive fitness model. Evol. Ecol., 6, 352–356.

    Article  Google Scholar 

  • Van Tienderen, P. H., & De Jong, G. (1986). Sex ratio under the haystack model: Polymorphism may occur. J. Theor. Biol., 122, 69–81.

    Article  Google Scholar 

  • Webb, C. (2003). A complete classification of Darwinian extinction in ecological interactions. Am. Nat., 161, 181–205.

    Article  Google Scholar 

  • West, S. A., Griffin, A. S., & Gardner, A. (2008). Social semantics: how useful has group selection been? J. Evol. Biol., 21, 374–385.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalle Parvinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parvinen, K. Adaptive Dynamics of Altruistic Cooperation in a Metapopulation: Evolutionary Emergence of Cooperators and Defectors or Evolutionary Suicide?. Bull Math Biol 73, 2605–2626 (2011). https://doi.org/10.1007/s11538-011-9638-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-011-9638-4

Keywords

Navigation