Skip to main content
Log in

Evolutionary suicide

  • Review Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

The great majority of species that lived on this earth have gone extinct. These extinctions are often explained by invoking changes in the environment, to which the species has been unable to adapt. Evolutionary suicide is an alternative explanation to such extinctions. It is an evolutionary process in which a viable population adapts in such a way that it can no longer persist. In this paper different models, where evolutionary suicide occurs are discussed, and the theory behind the phenomenon is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allee, W.C., A. Emerson, T. Park and K. Schmidt (1949). Principles of Animal Ecology. Saunders, Philadelphia.

    Google Scholar 

  • Cadet, C. (1998). Dynamique adaptative de la dispersion dans une métapopulation: modèles stochastiques densité-dépendants. Master's thesis, University of Paris VI, France.

  • Christiansen, F.B. (1991). On conditions for evolutionary stability for a continuously varying character. American Naturalist 138: 37–50.

    Article  Google Scholar 

  • Darwin, C. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, Albemarle Street, London.

  • Darwin, C. (1871). The descent of man and selection in relation to sex. John Murray, Albemarle Street, London.

  • Dercole, F. (2003). Remarks on branching-extinction evolutionary cycles. Journal of Mathematical Biology 47: 569–580.

    Article  Google Scholar 

  • Dieckmann, U. and M. Doebeli (1999). On the origin of species by sympatric speciation. Nature 400: 354–357.

    Article  Google Scholar 

  • Dieckmann, U., M. Heino and K. Parvinen (subm.). The adaptive dynamics of function-valued traits.

  • Dieckmann, U. and R. Law (1996). The dynamical theory of coevolution: a derivation from stochastic ecological processes. Journal of Mathematical Biology 34: 579–612.

    Article  Google Scholar 

  • Dieckmann, U., P. Marrow and R. Law (1995). Evolutionary cycling in predator-prey interactions: Population dynamics and the red queen. Journal of Theoretical Biology 176: 91–102.

    Article  Google Scholar 

  • Dieckmann, U., M. Doebeli, J.A.J. Metz and D. Tautz (Eds.) (2004). Adaptive Speciation. Cambridge University Press.

  • Diekmann, O., J.A.P. Heesterbeek and J.A.J. Metz (1990). On the definition and the computation of the basic reproduction ratio R0 in models for infectious-diseases in heterogeneous populations. Journal of Mathematical Biology 28: 365–382.

    Article  Google Scholar 

  • Doebeli, M. (1998). Invasion of rare mutants does not imply their evolutionary success: a counterexample from metapopulation theory. Journal of Evolutionary Biology 11: 389–401.

    Article  Google Scholar 

  • Eshel, I. (1983). Evolutionary and continuous stability. Journal of Theoretical Biology 103: 99–111.

    Article  Google Scholar 

  • Ferrière, R. (2000). Adaptive responses to environmental threats: evolutionary suicide, insurance, and rescue. Options Spring 2000, IIASA, Laxenburg, Austria, 12–16.

  • Geritz, S.A.H., É. Kisdi, G. Meszéna and J.A.J. Metz (1998). Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evolutionary Ecology 12: 35–57.

    Article  Google Scholar 

  • Geritz, S.A.H., M. Gyllenberg, F.J.A. Jacobs and K. Parvinen (2002). Invasion dynamics and attractor inheritance. Journal of Mathematical Biology 44: 548–560.

    Article  Google Scholar 

  • Geritz, S.A.H., J.A.J. Metz, É. Kisdi and G. Meszéna (1997). Dynamics of adaptation and evolutionary branching. Physical Review Letters 78: 2024–2027.

    Article  Google Scholar 

  • Geritz, S.A.H., E. van der Meijden and J.A.J. Metz (1999). Evolutionary dynamics of seed size and seedling competitive ability. Theoretical Population Biology 55: 324–343.

    Article  Google Scholar 

  • Gyllenberg, M. and J.A.J. Metz (2001). On fitness in structured metapopulations. Journal of Mathematical Biology 43: 545–560.

    Article  Google Scholar 

  • Gyllenberg, M. and K. Parvinen (2001). Necessary and sufficient conditions for evolutionary suicide. Bulletin of Mathematical Biology 63: 981–993.

    Google Scholar 

  • Gyllenberg, M., K. Parvinen and U. Dieckmann (2002). Evolutionary suicide and evolution of dispersal in structured metapopulations. Journal of Mathematical Biology 45: 79–105.

    Article  Google Scholar 

  • Haldane, J.B.S. (1932). The causes of evolution. Longmans, Green & Co. Limited, London.

    Google Scholar 

  • Hardin, G. (1968). The tragedy of the commons. Science 162: 1243–1248.

    Google Scholar 

  • Heino, M., J.A.J. Metz and V. Kaitala (1998). The enigma of frequency-dependent selection. Trends in Ecology & Evolution 13: 367–370.

    Google Scholar 

  • Kisdi, É. (1999). Evolutionary branching under asymmetric competition. Journal of Theoretical Biology 197: 149–162.

    Article  Google Scholar 

  • Kisdi, É., F.J.A. Jacobs and S.A.H. Geritz (2001). Red queen evolution by cycles of evolutionary branching and extinction. Selection 2: 161–176.

    Article  Google Scholar 

  • Leimar, O. (2001). Evolutionary change and Darwinian demons. Selection 2: 65–72.

    Google Scholar 

  • Marrow, P., U. Dieckmann and R. Law (1996). Evolutionary dynamics of predator-prey systems: an ecological perspective. Journal of Mathematical Biology 34: 556–578.

    Article  Google Scholar 

  • Matsuda, H. (1985). Evolutionarily stable strategies for predator switching. Journal of Theoretical Biology 115: 351–366.

    Google Scholar 

  • Matsuda, H. and P.A. Abrams (1994a). Runaway evolution to self-extinction under asymmetrical competition. Evolution 48: 1764–1772.

    Google Scholar 

  • Matsuda, H. and P.A. Abrams (1994b). Timid consumers: self-extinction due to adaptive change in foraging and anti-predator effort. Theoretical Population Biology 45: 76–91.

    Article  Google Scholar 

  • Maynard Smith, J. (1976). Evolution and the theory of games. American Scientist 64: 41–45.

    Google Scholar 

  • Maynard Smith, J. and G.R. Price (1973). The logic of animal conflict. Nature 246: 15–18.

    Google Scholar 

  • Meszéna, G., É. Kisdi, U. Dieckmann, S.A.H. Geritz and J.A.J. Metz (2001). Evolutionary optimisation models and matrix games in the unified perspective of adaptive dynamics. Selection 2: 193–210.

    Google Scholar 

  • Metz, J.A.J., S.A.H. Geritz, G. Meszéna, F.J.A. Jacobs and J.S. van Heerwaarden (1996a). Adaptive dynamics, a geometrical study of the consequenses of nearly faithful reproduction. In S.J. van Strien and S.M. Verduyn Lunel (Eds.), Stochastic and Spatial Structures of Dynamical Systems, North-Holland, Amsterdam, 183–231.

    Google Scholar 

  • Metz, J.A.J. and M. Gyllenberg (2001). How should we define fitness in structured metapopulation models? Including an application to the calculation of ES dispersal strategies. Proceedings of the Royal Society of London B: Biological Sciences 268: 499–508.

    Google Scholar 

  • Metz, J.A.J., S.D. Mylius and O. Diekmann (1996b). When does evolution optimize? On the relation between types of density dependence and evolutionarily stable life-history parameters. Working paper WP-96-004, IIASA, Laxenburg, Austria. http://www.iiasa.ac.at/cgi-bin/pubsrch?WP96004.

  • Metz, J.A.J., R.M. Nisbet and S.A.H. Geritz (1992). How should we define “fitness” for general ecological scenarios? Trends in Ecology & Evolution 7: 198–202.

    Article  Google Scholar 

  • Mylius, S.D. and O. Diekmann (2001). The resident strikes back: Invader-induced switching of resident attractor. Journal of Theoretical Biology 211: 297–311.

    Article  Google Scholar 

  • Parvinen, K. (1999). Evolution of migration in a metapopulation. Bulletin of Mathematical Biology 61: 531–550.

    Google Scholar 

  • Parvinen, K., U. Dieckmann and M. Heino (to appear in 2006). Function-valued adaptive dynamics and the calculus of variations. Journal of Mathematical Biology. DOI: 10.1007/s00285-005-0329-3.

  • Ricker, W.E. (1954). Stock and recruitment. Journal of the Fisheries Research Board of Canada 11, 559–623.

    Google Scholar 

  • Rosenzweig, M.L. (1973). Evolution of the predator isocline. Evolution 27: 84–94.

    Google Scholar 

  • Rosenzweig, M.L. (1977). Aspects of biological exploitation. The Quarterly Review of Biology 52: 371–380.

    Google Scholar 

  • Taylor, P.D. (1989). Evolutionary stability in one-parameter models under weak selection. Theoretical Population Biology 36: 125–143.

    Article  Google Scholar 

  • Van Tienderen, P.H. and G. De Jong (1986). Sex ratio under the haystack model: Polymorphism may occur. Journal of Theoretical Biology 122: 69–81.

    Google Scholar 

  • Webb, C. (2003). A complete classification of darwinian extinction in ecological interactions. American Naturalist 161: 181–205.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalle Parvinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parvinen, K. Evolutionary suicide. Acta Biotheor 53, 241–264 (2005). https://doi.org/10.1007/s10441-005-2531-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-005-2531-5

Keywords

Navigation