Skip to main content
Log in

On the Evolution of the Timing of Reproduction with Non-equilibrium Resident Dynamics

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We study the evolution of an individual’s reproductive strategy in a mechanistic modeling framework. We assume that the total number of juveniles one adult individual can produce is a finite constant, and we study how this number should be distributed during the season, given the types of inter-individual interactions and mortality processes included in the model. The evolution of the timing of reproduction in this modeling framework has already been studied earlier in the case of equilibrium resident dynamics, but we generalize the situation to also fluctuating population dynamics. We find that, as in the equilibrium case, the presence or absence of inter-juvenile aggression affects the functional form of the evolutionarily stable reproductive strategy. If an ESS exists, it can have an absolutely continuous part only if inter-juvenile aggression is included in the model. If inter-juvenile aggression is not included in the model, an ESS can have no continuous parts, and only Dirac measures are possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beverton, R. J. H., & Holt, S. J. (Eds.) (1957). Fisheries investigations : Vol. 19. On the dynamics of exploited fish populations. London: H.M. Stationery Office.

    Google Scholar 

  • Brommer, J., Kokko, H., & Pietiäinen, H. (2000). Reproductive effort and reproductive values in periodic environments. Am. Nat., 155, 454–472.

    Article  Google Scholar 

  • Bulmer, M. G. (1983). Models for the evolution of protandry in insects. Theor. Popul. Biol., 23, 314–322.

    Article  Google Scholar 

  • Dawson, P. S. (1977). Life history strategy and evolutionary history of Tribolium flour beetles. Evolution, 31, 226–229.

    Article  Google Scholar 

  • Eskola, H. T. M. (2009). On the evolution of the timing of reproduction. Theor. Popul. Biol., 75, 98–108.

    Article  MATH  Google Scholar 

  • Eskola, H. T. M., & Geritz, S. A. H. (2007). On the mechanistic derivation of various discrete-time population models. Bull. Math. Biol., 69, 329–346.

    Article  MathSciNet  MATH  Google Scholar 

  • Ferrière, R., & Gatto, M. (1995). Lyapunov exponents and the mathematics of invasion in oscillatory or chaotic populations. Theor. Popul. Biol., 48, 126–171.

    Article  MATH  Google Scholar 

  • Gyllenberg, M., Hanski, I., & Lindström, T. (1996). A predator-prey model with optimal suppression of reproduction in the prey. Math. Biosci., 134, 119–152.

    Article  MathSciNet  MATH  Google Scholar 

  • Gyllenberg, M., Hanski, I., & Lindström, T. (1997). Continuous versus discrete single species population models with adjustable reproduction strategies. Bull. Math. Biol., 59, 679–705.

    Article  MATH  Google Scholar 

  • Gyllenberg, M., Hanski, I., & Lindström, T. (in press). Conditional reproductive strategies under variable environmental conditions. In U. Dieckmann & J. A. J. Metz (Eds.), Elements of adaptive dynamics. Cambridge: Cambridge University Press.

  • Haccou, P., & Iwasa, Y. (1995). Optimal mixed strategies in stochastic environments. Theor. Popul. Biol., 47, 212–243.

    Article  MATH  Google Scholar 

  • Harvey, P. H., Partridge, L., & Southwood, T. R. E. (Eds.) (1991). The evolution of reproductive strategies. The Royal Society.

  • Hassell, M. P. (1975). Density-dependence in single-species populations. J. Anim. Ecol., 44, 283–295.

    Article  Google Scholar 

  • Iwasa, Y., & Haccou, P. (1994). ESS emergence pattern of male butterflies in stochastic environments. Evol. Ecol., 8, 503–523.

    Article  Google Scholar 

  • Iwasa, Y., Odendaal, F. J., Murphy, D. D., Ehrlich, P. R., & Launer, A. E. (1983). Emergence patterns in male butterflies: a hypothesis and a test. Theor. Popul. Biol., 23, 363–379.

    Article  MATH  Google Scholar 

  • Lalonde, R. G., & Roitberg, B. D. (2006). Chaotic dynamics can select for long-term dormancy. Am. Nat., 168, 127–131.

    Article  Google Scholar 

  • Lewontin, R. C., & Cohen, D. (1969). On population growth in a randomly varying environment. Proc. Natl. Acad. Sci. USA, 62, 1056–1060.

    Article  MathSciNet  Google Scholar 

  • Maynard Smith, J., & Price, G. R. (1973). The logic of animal conflict. Nature, 246, 15–18.

    Article  Google Scholar 

  • Metz, J. A. J., Nisbet, R. M., & Geritz, S. A. H. (1992). How should we define “fitness” for general ecological scenarios? Trends Ecol. Evol., 7, 198–202.

    Article  Google Scholar 

  • Parvinen, K., Dieckmann, U., & Heino, M. (2006). Function-valued adaptive dynamics and the calculus of variations. J. Math. Biol., 52, 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  • Ringel, M. S., Rees, M., & Godfray, H. C. J. (1998). The evolution of diapause in a coupled host-parasitoid system. J. Theor. Biol., 194, 195–204.

    Article  Google Scholar 

  • Roff, D. A. (1992). Evolution of life histories: theory and analysis. New York: Chapman & Hall.

    Google Scholar 

  • Sasaki, A., & Ellner, S. (1995). The evolutionarily stable phenotype distribution in a random environment. Evolution, 49, 337–350.

    Article  Google Scholar 

  • Satake, A., Sasaki, A., & Iwasa, Y. (2001). Variable timing of reproduction in unpredictable environments: adaptation of flood plain plants. Theor. Popul. Biol., 60, 1–15.

    Article  MATH  Google Scholar 

  • Stearns, S. C. (1992). The evolution of life histories. Oxford: Oxford University Press.

    Google Scholar 

  • Stearns, S. C. (2000). Life history evolution: successes, limitations, and prospects. Naturwissenschaften, 87, 476–486.

    Article  Google Scholar 

  • Thieme, H. R. T. (2003). Mathematics in population biology. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Van Dooren, T. J. M., & Metz, J. A. J. (1998). Delayed maturation in temporally structured populations with non-equilibrium dynamics. J. Evol. Biol., 11, 41–62.

    Article  Google Scholar 

  • Wan, F. Y. M. (1995). Introduction to the calculus of variations and its applications. New York: Chapman & Hall.

    MATH  Google Scholar 

  • Yoshimura, J., & Jansen, V. A. A. (1996). Evolution and population dynamics in stochastic environments. Res. Popul. Ecol., 38, 165–182.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna T. M. Eskola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eskola, H.T.M., Geritz, S.A.H. & Gyllenberg, M. On the Evolution of the Timing of Reproduction with Non-equilibrium Resident Dynamics. Bull Math Biol 73, 1312–1332 (2011). https://doi.org/10.1007/s11538-010-9560-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9560-1

Keywords

Navigation