Skip to main content
Log in

Generalized Voronoi Tessellation as a Model of Two-dimensional Cell Tissue Dynamics

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Voronoi tessellations have been used to model the geometric arrangement of cells in morphogenetic or cancerous tissues, however, so far only with flat hyper-surfaces as cell-cell contact borders. In order to reproduce the experimentally observed piecewise spherical boundary shapes, we develop a consistent theoretical framework of multiplicatively weighted distance functions, defining generalized finite Voronoi neighborhoods around cell bodies of varying radius, which serve as heterogeneous generators of the resulting model tissue. The interactions between cells are represented by adhesive and repelling force densities on the cell contact borders. In addition, protrusive locomotion forces are implemented along the cell boundaries at the tissue margin, and stochastic perturbations allow for non-deterministic motility effects. Simulations of the emerging system of stochastic differential equations for position and velocity of cell centers show the feasibility of this Voronoi method generating realistic cell shapes. In the limiting case of a single cell pair in brief contact, the dynamical nonlinear Ornstein–Uhlenbeck process is analytically investigated. In general, topologically distinct tissue conformations are observed, exhibiting stability on different time scales, and tissue coherence is quantified by suitable characteristics. Finally, an argument is derived pointing to a tradeoff in natural tissues between cell size heterogeneity and the extension of cellular lamellae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberts, B., Johnson, A., Lewis, J., Roberts, K., Walter, P. (Eds.), 2002. Molecular Biology of the Cell. 4th edn. Garland, New York. Chaps. 16 and 19.

    Google Scholar 

  • Alt, W., 2003. Nonlinear hyperbolic systems of generalized Navier-Stokes type for interactive motion in biology. In Hildebrandt, S., Karcher, H. (Eds.), Geometric Analysis and Nonlinear Partial Differential Equations, p. 431. Springer, Berlin.

    Google Scholar 

  • Alt, H.-W., Alt, W., 2009. Phase boundary dynamics: Transitions between ordered and disordered lipid monolayers. Interfaces and Free Bound. 11, 1.

    Article  MATH  MathSciNet  Google Scholar 

  • Ananthakrishnan, R., Ehrlicher, A., 2007. The forces behind cell movement. Int. J. Biol. Sci. 3, 303.

    Article  Google Scholar 

  • Arnold, L., 1974. Stochastic Differential Equations: Theory and Applications. Wiley–Interscience, New York.

    MATH  Google Scholar 

  • Ash, P., Bolker, E. 1986. Generalized Dirichlet tessellations. Geom. Dedic. 20, 209.

    Article  MATH  MathSciNet  Google Scholar 

  • Aurenhammer, F., Edelsbrunner, H., 1984. An optimal algorithm for constructing the weighted Voronoi diagram in the plane. Pattern Recognit. 17, 251.

    Article  MATH  MathSciNet  Google Scholar 

  • Aurenhammer, F., Klein, R., Voronoi Diagrams. Technical Report 198, FernUniversität Hagen (1996). http://wwwpi6.fernuni-hagen.de/Publikationen/tr198.pdf

  • Bernal, J., Bibliographic notes on Voronoi diagrams. Technical Report 5164, U.S. Dept. of Commerce. National Institute of Standards and Technology (1993). ftp://math.nist.gov/pub/bernal/or.ps.Z.

  • Beyer, T., Meyer-Hermann, M., 2007. Modeling emergent tissue organization involving high-speed migrating cells in a flow equilibrium. Phys. Rev. E 76, 021929.

    Article  Google Scholar 

  • Beyer, T., Schaller, G., Deutsch, A., Meyer-Hermann, M., 2005. Parallel dynamic and kinetic regular triangulation in three dimensions. Comput. Phys. Commun. 172, 86.

    Article  Google Scholar 

  • Brevier, J., Montero, D., Svitkina, T., Riveline, D., 2008. The asymmetric self-assembly mechanism of adherens junctions: A cellular push–pull unit. Phys. Biol. 5, 016005.

    Article  Google Scholar 

  • Brillouin, L., 1930. Les électrons dans les métaux et le classement des ondes de de Broglie correspondantes. C. R. Hebd. Séances Acad. Sci. 191, 292.

    Google Scholar 

  • Brodland, W., Veldhuis, J., 2002. Computer simulations of mitosis and interdependencies between mitosis orientation, cell shape and epithelia reshaping. J. Biomech. 35, 673.

    Article  Google Scholar 

  • Dieterich, P., Seebach, J., Schnittler, H., 2004. Quantification of shear stress-induced cell migration in endothelial cultures. In: Deutsch, A., Falcke, M., Howard, J., Zimmermann, W. (Eds.), Function and Regulation of Cellular Systems: Experiments and Models, Mathematics and Biosciences in Interaction, p. 199. Birkhäuser, Basel

    Google Scholar 

  • Dirichlet, G.L., 1850. Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. J. Reine Angew. Math. 40, 209.

    MATH  Google Scholar 

  • Drasdo, D., Forgacs, G., 2000. Modeling the interplay of generic and genetic mechanisms in cleavage, blastulation, and gastrulation. Dev. Dyn. 219, 182.

    Article  Google Scholar 

  • Drasdo, D., Kree, R., McCaskill, J.S., 1995. Monte Carlo approach to tissue-cell populations. Phys. Rev. E 52, 6635.

    Article  Google Scholar 

  • Evans, E., Ritchie, K., 1997. Dynamic strength of molecular adhesion bonds. Biophys. J. 72, 1541.

    Article  Google Scholar 

  • Friedl, P., Zänker, K.S., Bröcker, E.-B., 1998. Cell migration strategies in 3-D extracellular matrix: Differences in morphology, cell matrix interactions and integrin function. Micros. Res. Tech. 43, 369.

    Article  Google Scholar 

  • Galle, J., Loeffler, M., Drasdo, D., 2005. Modeling the effect of deregulated proliferation and apoptosis on the growth dynamics of epithelial cell populations in vitro. Biophys. J. 88, 62.

    Article  Google Scholar 

  • Gambin, Y., Lopez-Esparza, R., Reffay, M., Sierecki, E., Gov, N.S., Genest, M., Hodges, R.S., Urbach, W., 2006. Lateral mobility of proteins in liquid membranes revisited. Proc. Nat. Acad. Sci. USA 103, 2098.

    Article  Google Scholar 

  • Hegerfeldt, Y., Tusch, M., Bröcker, E.-B., Friedl, P., 2002. Collective cell movement in primary melanoma explants: Plasticity of cell-cell interaction, β1-integrin function and migration strategies. Cancer Res. 62, 2125.

    Google Scholar 

  • Honda, H., 1978. Description of cellular patterns by Dirichlet domains: The two-dimensional case. J. Theor. Biol. 72, 523.

    Article  MathSciNet  Google Scholar 

  • Honda, H., Tanemura, M., Nagai, T., 2004. A three-dimensional vertex dynamics cell model of space-filling polyhedra simulating cell behavior in a cell aggregate. J. Theor. Biol. 226, 439.

    Article  MathSciNet  Google Scholar 

  • Janke, W. (Ed.), 2008. Rugged Free Energy Landscapes: Common Computational Approaches to Spin Glasses, Structural Glasses and Biological Macromolecules. Lecture Notes in Physics, vol. 736. Springer, Berlin.

    Google Scholar 

  • Kirfel, G., Rigort, A., Borm, B., Schulte, C., Herzog, V., 2003. Structural and compositional analysis of the keratinocyte migration track. Cell Motil. Cytoskelet. 55, 1.

    Article  Google Scholar 

  • Kloeden, P.E., Platen, E., 1992. Numerical Solution of Stochastic Differential Equations. Springer, Berlin. Chap. 8.

    MATH  Google Scholar 

  • Koestler, S.A., Auinger, S., Vinzenz, M., Rottner, K., Small, J.V., 2008. Differentially oriented populations of actin filaments generated in lamellipodia collaborate in pushing and pausing at the cell front. Nat. Cell Biol. 10, 306.

    Article  Google Scholar 

  • Kuusela, E., Alt, W., 2009. Continuum model of cell adhesion and migration. J. Math. Biol. 58, 135.

    Article  MATH  MathSciNet  Google Scholar 

  • Marie, H., Pratt, S.J., Betson, M., Epple, H., Kittler, J.T., Meek, L., Moss, S.J., Troyanovsky, S., Attwell, D., Longmore, G.D., Braga, V.M., 2003. The LIM protein Ajuba is recruited to cadherin-dependent cell junctions through an association with alpha-catenin. J. Biol. Chem. 278, 1220.

    Article  Google Scholar 

  • Meineke, F., Potten, S., Loeffler, M., 2001. Cell migration and organization in the intestinal crypt using a lattice-free model. Cell Prolif. 34, 253.

    Article  Google Scholar 

  • Möhl, C., Modellierung von Adhäsions- und Cytoskelett-Dynamik in Lamellipodien migratorischer Zellen. Diploma thesis, Universität Bonn (2005)

  • Purnomo, E.H., van den Ende, D., Vanapalli, S.A., Mugele, F., 2008. Glass transition and aging in dense suspensions of thermosensitive microgel particles. Phys. Rev. Lett. 101, 238301.

    Article  Google Scholar 

  • Schaller, G., On selected numerical approaches to cellular tissue. PhD thesis, Johann Wolfgang Goethe-Universität, Frankfurt am Main (2005)

  • Schaller, G., Meyer-Hermann, M., 2004. Kinetic and dynamic Delaunay tetrahedralizations in three dimensions. Comput. Phys. Commun. 162, 9.

    Article  MathSciNet  Google Scholar 

  • Schaller, G., Meyer-Hermann, M., 2005. Multicellular tumor spheroid in an off-lattice Voronoi-Delaunay cell model. Phys. Rev. E 71, 051910.

    Article  MathSciNet  Google Scholar 

  • Semmrich, C., Storz, T., Glaser, J., Merkel, R., Bausch, A.R., Kroy, K., 2007. Glass transition and rheological redundancy in F-actin solutions. Proc. Natl. Acad. Sci. USA 104, 20199.

    Article  Google Scholar 

  • Shamos, M., Hoey, D., 1975. Closest point problems. In: Proceedings of the 16th Annual IEEE Symposium on Foundations of Computer Science (FOCS), p. 151.

  • Sivaramakrishnan, S., DeGuilio, J.V., Lorand, L., Goldman, R.D., Ridge, K.M., 2008. Micromechanical properties of keratin intermediate filament networks. Proc. Natl. Acad. Sci. USA 105, 889.

    Article  Google Scholar 

  • Sulsky, D., Childress, S., Percus, J.K., 1984. A model for cell sorting. J. Theor. Biol. 106, 275.

    Article  Google Scholar 

  • Taute, K.M., Pampaloni, F., Frey, E., Florin, E.-L., 2008. Microtubule dynamics depart from the wormlike chain model. Phys. Rev. Lett. 100, 028102.

    Article  Google Scholar 

  • Thiessen, A.H., 1911. Precipitation averages for large areas. Mont. Weather Rev. 39, 1082.

    Google Scholar 

  • Tinkle, C.L., Pasolli, A., Stokes, N., Fuchs, E., 2008. New insights into cadherin function in epidermal sheet formation and maintenance of tissue integrity. Proc. Natl. Acad. Sci. USA 105, 15405.

    Article  Google Scholar 

  • Voronoi, G., 1908. Nouvelles applications des paramètres continus à la théorie de formes quadratiques. J. Reine Angew. Math. 134, 198.

    MATH  Google Scholar 

  • Weliky, M., Oster, G., 1990. The mechanical basis of cell rearrangement. I. Epithelial morphogenesis during Fundulus epiboly. Development 109, 373.

    Google Scholar 

  • Weliky, M., Minsuk, S., Keller, R., Oster, G., 1991. Notochord morphogenesis in Xenopus laevis: Simulation of cell behavior underlying tissue convergence and extension. Development 113, 1231.

    Google Scholar 

  • Wigner, E., Seitz, F., 1933. On the constitution of metallic sodium. Phys. Rev. 43, 804.

    Article  MATH  Google Scholar 

  • Young, B., Heath, J.W. (Eds.), 2000. Wheater’s Functional Histology: A Text and Colour Atlas. Churchill, London.

    Google Scholar 

  • Zahm, J.-M., Kaplan, H., Hérard, A.-L., Doriot, F., Pierrot, D., Somelette, P., Puchelle, E., 1997. Cell migration and proliferation during the in vitro wound repair of the respiratory epithelium. Cell Motil. Cytoskelet. 37, 33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Bock.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(ZIP 91.1 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bock, M., Tyagi, A.K., Kreft, JU. et al. Generalized Voronoi Tessellation as a Model of Two-dimensional Cell Tissue Dynamics. Bull. Math. Biol. 72, 1696–1731 (2010). https://doi.org/10.1007/s11538-009-9498-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9498-3

Keywords

Navigation