Skip to main content

Advertisement

Log in

Oscillations in an Intra-host Model of Plasmodium Falciparum Malaria Due to Cross-reactive Immune Response

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider an intra-host model of malaria that allows for antigenic variation within a single species. More specifically, the host’s immune response is compartmentalized into reactions to major and minor epitopes. We investigate the conditions that lead to transient oscillations, which correspond to recurrent clinical episodes of the diseases, and how a small delay in the activation of the immune response can lead to persistent oscillations. We find that the efficacies of the immune responses to the major and minor epitopes, defined in terms of rate constants, play a crucial role in determining when there will be transient oscillations. The delay necessary to excite persistent oscillations, the time duration between disease episodes and their severity are also expressed in terms of the immune response efficacies. In addition, we describe how the severity and duration of the oscillations depend upon the parasite propagation rates and the immune response efficacies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agur, Z., Mehr, R., 1997. Modelling Trypanosoma congolense parasitaemia patterns during the chronic phase of infection in N’Dama cattle. Parasite Immunol. 19, 171–182.

    Article  Google Scholar 

  • Anderson, R.M., 1998. Complex dynamics behaviors in the interaction between parasite populations and the host’s immune system. Int. J. Parasitol. 28, 551–566.

    Article  Google Scholar 

  • Anderson, R.M., May, R.M., Gupta, S., 1989. Non-linear phenomena in host-parasite interactions. Parasitology 99, S59–S79.

    Article  Google Scholar 

  • Antia, R., Nowak, M.A., Anderson, R.M., 1996. Antigenic variation and the within-host dynamics of parasites. Proc. Natl. Acad. Sci. USA 93, 985–989.

    Article  Google Scholar 

  • Blyuss, K.B., Gupta, S., 2009. Stability and bifurcations in a model of antigenic variation in malaria. J. Math. Biol. 58, 923–937.

    Article  MATH  MathSciNet  Google Scholar 

  • Carr, T.W., Billings, L., B Schwartz, I., Triandaf, I., 2000. Bi-instability and the global role of unstable resonant orbits in a driven laser. Physica D 147, 59–82.

    Article  MATH  MathSciNet  Google Scholar 

  • Carr, T.W., Schwartz, I.B., Kim, M.Y., Roy, R., 2006. Delayed-mutual coupling dynamics of lasers: scaling laws and resonances. SIAM J. Dyn. Syst. 5, 699–725.

    Article  MATH  MathSciNet  Google Scholar 

  • Dawes, J.H.P., Gog, J.R., 2002. The onset of oscillatory dynamics in models of multiple disease strains. J. Math. Biol. 45, 471–510.

    Article  MATH  MathSciNet  Google Scholar 

  • De Leenheer, P., Pilyugin, S.S., 2008. Immune response to a malaria infection: properties of a mathematical model. J. Biol. Dyn. 2, 102–120.

    Article  MATH  MathSciNet  Google Scholar 

  • Engelborghs, K., Luzyanina, T., Samaey, G., 2001. DDE-BIFTOOL v.2.00 user manual: a Matlab package for bifurcation analysis of delay differential equations. Technical Report TW-330, Dept. of Computer Science, K.U. Leuven.

  • Ferguson, N., Anderson, R., Gupta, S., 1999. The effect of antibody-dependent enhancement on the transmission dynamics and persistence of multiple-strain pathogens. Proc. Natl. Acad. Sci. USA 96, 790–794.

    Article  Google Scholar 

  • Gardner, M.J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R.W., et al., 2002. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498–511.

    Article  Google Scholar 

  • Gatton, M.L., Peters, J.M., Fowler, E.V., Cheng, Q., 2003. Switching rates of Plasmodium falciparum var genes: faster than we thought? Trends Parasitol. 19, 202–208.

    Article  Google Scholar 

  • Gravenor, M.B., Kwaitkowski, D., 1998. An analysis of the temperature effects of fever on the intra-host population dynamics of Plasmodium falciparum. Parasitology 117, 97–105.

    Article  Google Scholar 

  • Gurarie, D., Zimmerman, P.A., King, C.H., 2006. Dynamic regulation of single- and mixed-species malaria infection: insights to specific and non-specific mechanisms of control. J. Theor. Biol. 240, 185–199.

    Article  MathSciNet  Google Scholar 

  • Iggidr, A., Kamgang, J.-C., Sallet, G., Tewa, J.-J., 2006. Global analysis of new malaria introhost models with a competitive exclusion principle. SIAM J. Appl. Math. 67, 260–278.

    Article  MATH  MathSciNet  Google Scholar 

  • Kevorkian, J., Cole, J.D., 1996. Multiple Scale and Singular Perturbation Methods. Springer, New York.

    MATH  Google Scholar 

  • Kosinski, R.J., 1980. Antigenic variation in trypanosomes: a computer analysis of variant order. Parasitology 80, 343–357.

    Article  Google Scholar 

  • Kwiatkowski, D., Nowak, M., 1991. Periodic and chaotic host-parasite interactions in human malaria. Proc. Natl. Acad. Sci. USA 88, 5111–5113.

    Article  Google Scholar 

  • MacDonald, N., 1989. Biological Delay Systems: Linear Stability Theory. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • McKenzie, F.E., Bossert, W.H., 1997. The dynamics of Plasmodium falciparum blood-stage infection. J. Theor. Biol. 188, 127–140.

    Article  Google Scholar 

  • McKenzie, F.E., Bossert, W.H., 1998. A target for intervention in Plasmodium falciparum infections. Am. J. Trop. Med. Hyg. 58, 763–767.

    Google Scholar 

  • Molineaux, L., Dietz, K., 1999. Review of intra-host models of malaria. Parasitologia 41, 221–231.

    Google Scholar 

  • Oaks, S.C., Mitchell, V.S., Pearson, G.W., Carpenter, C.J. (Eds.), 1991. Malaria—Obstacles and Opportunities. Institute of Medicine, National Academy Press.

  • Recker, M., Gupta, S., 2006. Conflicting immune responses can prolong the length of infection in Plasmodium falciparum malaria. Bull. Math. Biol. 68, 821–835.

    Article  MathSciNet  Google Scholar 

  • Recker, M., Nee, S., Bull, P.C., Kinyanjul, S., Marsh, K., Newbold, C., Gupta, S., 2004. Transient cross-reactive immune responses can orchestrate antigenic variation in malaria. Nature 49, 555–558.

    Article  Google Scholar 

  • Shampine, L.F., Thompson, S., 2001. Solving DDEs in Matlab. J. Appl. Numer. Math. 37, 441–458.

    Article  MATH  MathSciNet  Google Scholar 

  • Strogatz, S.H., Mirollo, R.E., 1993. Splay states in globally coupled Josephson arrays: analytical prediction of Floquet multipliers. Phys. Rev. E 47, 220–227.

    Article  Google Scholar 

  • Taylor, M.L., Carr, T.W., 2009. An SIR epidemic model with partial temporary immunity modeled with delay. J. Math. Biol. 59, 841–880.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas W. Carr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, J.L., Carr, T.W. Oscillations in an Intra-host Model of Plasmodium Falciparum Malaria Due to Cross-reactive Immune Response. Bull. Math. Biol. 72, 590–610 (2010). https://doi.org/10.1007/s11538-009-9462-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9462-2

Keywords

Navigation