Skip to main content

Advertisement

Log in

An SIR epidemic model with partial temporary immunity modeled with delay

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The SIR epidemic model for disease dynamics considers recovered individuals to be permanently immune, while the SIS epidemic model considers recovered individuals to be immediately resusceptible. We study the case of temporary immunity in an SIR-based model with delayed coupling between the susceptible and removed classes, which results in a coupled set of delay differential equations. We find conditions for which the endemic steady state becomes unstable to periodic outbreaks. We then use analytical and numerical bifurcation analysis to describe how the severity and period of the outbreaks depend on the model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson RM, May RM (1991) (eds)Infectious diseases of humans: dynamics and control. Oxford University Press, Oxford, UK

    Google Scholar 

  • Brauer F, Castillo-Chavez C (2001) Mathematical models in population biology and epidemiology. Springer, New York

    MATH  Google Scholar 

  • Bestehorn M, Grigorieva EV, Haken H, Kaschenko SA (2000) Order parameters for class-B lasers with a long time delayed feedback. Phys D 145: 110–129

    Article  MATH  MathSciNet  Google Scholar 

  • Carr TW (2003) Period locking due to delayed feedback in a laser with saturable absorber. Phys Rev E 68: 026212

    Article  MathSciNet  Google Scholar 

  • Carr TW, Billings L, Schwartz IB, Triandaf I (2000) Bi-instability and the global role of unstable resonant orbits in a driven laser. Phys D 247: 59–82

    Article  MathSciNet  Google Scholar 

  • Carr TW, Schwartz IB, Kim M-Y, Roy R (2006) Delayed-mutual coupling dynamics of lasers: scaling laws and resonances. SIAM J Appl Dyn Syst 5: 699–725

    Article  MATH  MathSciNet  Google Scholar 

  • Chow S-N, Diekmann O, Mallet-Paret J (1985) Stability, multiplicity and global continuation of symmetric periodic solutions of a nonlinear Volterra integral equation. Jpn J Appl Math 2: 433–469

    Article  MATH  MathSciNet  Google Scholar 

  • Cooke K, Van Den Driessche P (1996) Analysis of an SEIRS epidemic model with two delays. J Math Biol 35: 240–260

    Article  MATH  MathSciNet  Google Scholar 

  • Cooke K, Van Den Driessche P, Zou X (1999) Interaction of maturation delay and nonlinear birth in population and epidemic models. J Math Biol 39: 332–352

    Article  MATH  MathSciNet  Google Scholar 

  • Diekmann O, Montijn R (1982) Prelude to Hopf in an epidemic model: analysis of a characteristic equation associated with a nonlinear volterra integral equation. J Math Biol 14: 117–127

    Article  MATH  MathSciNet  Google Scholar 

  • Doedel EJ, Oldeman BE (2007) AUTO-07P: Continuation and bifurcation software for ordinary differential equations. California Institute of Technology and Concordia University

  • Driver RD (1977) Ordinary and delay differential equations. Springer, New York

    MATH  Google Scholar 

  • Driver RD, Sasser DW, Slater ML (1973) The equation x′(t) =  ax(t) +  b(tτ) with ‘small’ delay. Am Math Mon 80: 990–995

    Article  MATH  MathSciNet  Google Scholar 

  • Dykman MI, Schwartz IB, Landsman AS (2008) Disease extinction in the presence of random vaccination. Phys Rev Lett 101: 078101

    Article  Google Scholar 

  • El’sgol’ts LE, Norkin SB (1973) Introduction to the theory and application of differential equations with deviating arguments (translated by J.L.Casti). Academic Press, New York

    Google Scholar 

  • Engelborghs K, Luzyanina T, Samaey G (2001) DDE-BIFTOOL v. 2.00 user manual: a Matlab package for bifurcation analysis of delay differential equations, Technical Report TW-330, Department of Computer Science, K.E.Leuven, Leuven, Belgium

  • Grigorieva EV, Kahchenko SA, Loika NA, Samson AM (1992) Nonlinear dynamics in a laser with a negative delayed feedback. Phys D 59: 297

    Article  MATH  Google Scholar 

  • Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev 42: 599–653

    Article  MATH  MathSciNet  Google Scholar 

  • Hethcote HW, Stech HW, Van Den Driessche P (1981) Nonlinear oscillations in epidemic models. SIAM J Appl Math 40: 1–9

    Article  MATH  MathSciNet  Google Scholar 

  • Kevorkian J, Cole JD (1996) Multiple scale and singular perturbation methods. Springer, New York

    MATH  Google Scholar 

  • Kim MY, Roy R, Aron JL, Carr TW, Schwartz IB (2005) Scaling behavior of laser population dynamics with time-delayed coupling: theory and experiment. Phys Rev Lett 94: 088101

    Article  Google Scholar 

  • Luzyanina T, Roose D, Bocharov G (2005) Numerical bifurcation analysis of immunological models with time delays. J Comput Appl Math 184: 165–176

    Article  MATH  MathSciNet  Google Scholar 

  • Pieroux D, Erneux T (1996) Strongly pulsating lasers with delay. Phys Rev A 53: 2765–2771

    Article  Google Scholar 

  • Pieroux D, Erneux T, Otsuka K (1994) Minimal model of a class-B lasers with delayed feedback: Cascading branching of periodic solutions and period doubling bifurcation. Phys Rev A 50: 1822–1829

    Article  Google Scholar 

  • Pieroux D, Erneux T, Gavrielides A, Kovanis V (2000) Hopf bifurcation subject to a large delay in a laser system. SIAM J Appl Math 61: 966–982

    Article  MATH  MathSciNet  Google Scholar 

  • Schwartz IB, Erneux T (1994) Subharmonic hysteresis and period doubling bifurcations for a periodically driven laser. SIAM J Appl Math 54: 1083–1100

    Article  MATH  MathSciNet  Google Scholar 

  • Schwartz IB, Smith HL (1983) Infinite subharmonic bifurcation in an SEIR epidemic model. J Math Biol 18: 233–253

    Article  MATH  MathSciNet  Google Scholar 

  • Thompson S, Shampine LF (2006) A friendly Fortran DDE solver. Appl Numer Math 56: 503–516

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas W. Carr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, M.L., Carr, T.W. An SIR epidemic model with partial temporary immunity modeled with delay. J. Math. Biol. 59, 841–880 (2009). https://doi.org/10.1007/s00285-009-0256-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-009-0256-9

Keywords

Mathematics Subject Classification (2000)

Navigation