Skip to main content

Advertisement

Log in

Parameter Estimation of Some Epidemic Models. The Case of Recurrent Epidemics Caused by Respiratory Syncytial Virus

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The research presented in this paper addresses the problem of fitting a mathematical model to epidemic data. We propose an implementation of the Landweber iteration to solve locally the arising parameter estimation problem. The epidemic models considered consist of suitable systems of ordinary differential equations. The results presented suggest that the inverse problem approach is a reliable method to solve the fitting problem. The predictive capabilities of this approach are demonstrated by comparing simulations based on estimation of parameters against real data sets for the case of recurrent epidemics caused by the respiratory syncytial virus in children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, M.E., Moghadas, S.M., 2004. Periodicity in an epidemic model with a generalized non-linear incidence. Math. Biosci. 189(1), 75–96.

    Article  MATH  MathSciNet  Google Scholar 

  • Alexander, M.E., Moghadas, S.M., 2006. Bifurcation analysis of an SIRS epidemic model with generalized incidence. SIAM J. Appl. Math. 65(5), 1794–1816.

    Article  MathSciNet  Google Scholar 

  • Alioum, A., Commenges, D., Thiebaut, R., Dabis, F., 2005. A multistate approach for estimating the incidence of human immunodeficiency virus by using data from a prevalent cohort study. J. R. Stat. Soc., Ser. C 54(4), 739–752.

    Article  MATH  MathSciNet  Google Scholar 

  • Banks, H.T., Banks, J.E., Dick, L.K., Stark, J.D., 2007. Estimation of dynamic rate parameters in insect populations undergoing sublethal exposure to pesticides. Bull. Math. Biol. 69(7), 2139–2180.

    Article  MATH  MathSciNet  Google Scholar 

  • Biegler, L.T., Grossmann, I.E., 2004. Retrospective on optimization. Comput. Chem. Eng. 28(8), 1169–1192.

    Google Scholar 

  • Brunet, R.C., Struchiner, C.J., 1996. Rate estimation from prevalence information on a simple epidemiologic model for health interventions. Theor. Popul. Biol. 50(3), 209–226.

    Article  MATH  Google Scholar 

  • Capasso, V., Serio, G., 1978. A generalization of the kermack-mckendrick deterministic epidemic model. Math. Biosci. 42, 41–61.

    Article  MathSciNet  Google Scholar 

  • Dhooge, A., Govaerts, W., Kuznetsov, Y.A., 2003. MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. (TOMS) 29(2), 141–164.

    Article  MATH  MathSciNet  Google Scholar 

  • Gomes, M.G.M., Margheri, A., Medley, G.F., Rebelo, C., 2005. Dynamical behaviour of epidemiological models with sub-optimal immunity and nonlinear incidence. J. Math. Biol. 51(4), 414–430.

    Article  MATH  MathSciNet  Google Scholar 

  • Greenhalgh, D., Moneim, I.A., 2003. SIRS epidemic model and simulations using different types of seasonal contact rate. Syst. Anal. Modell. Simul. 43(5), 573–600.

    Article  MATH  MathSciNet  Google Scholar 

  • Hanke, M., Neubauer, A., Scherzer, O., 1995. A convergence analysis of the Landweber iteration for nonlinear ill-posed problems. Numer. Math. 72(1), 21–37.

    Article  MATH  MathSciNet  Google Scholar 

  • Hethcote, H.W., van den Driessche, P., 1991. Some epidemiological models with nonlinear incidence. J. Math. Biol. 29(3), 271–287.

    Article  MATH  MathSciNet  Google Scholar 

  • Hethcote, H.W., Lewis, M.A., van den Driessche, P., 1989. An epidemiological model with a delay and a nonlinear incidence rate. J. Math. Biol. 27(1), 49–64.

    MATH  MathSciNet  Google Scholar 

  • Korobeinikov, A., Maini, P.K., 2005. Non-linear incidence and stability of infectious disease models. Math. Med. Biol. 22(2), 113–128.

    Article  MATH  Google Scholar 

  • Kyrychko, Y.N., Blyuss, K.B., 2005. Global properties of a delayed SIR model with temporary immunity and nonlinear incidence rate. Nonlinear Anal.: Real World Appl. 6(3), 495–507.

    Article  MATH  MathSciNet  Google Scholar 

  • Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E., 1998. Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J. Optim. 9(1), 112–147.

    Article  MATH  MathSciNet  Google Scholar 

  • Li, M.Y., Muldowney, J.S., 1995. Global stability for the SEIR model in epidemiology. Math. Biosci. 125, 155–164.

    Article  MATH  MathSciNet  Google Scholar 

  • Li, Z., Osborne, M.R., Prvan, T., 2005. Parameter estimation of ordinary differential equations. IMA J. Numer. Anal. 25(2), 264.

    Article  MATH  MathSciNet  Google Scholar 

  • Pourabbas, E., d’Onofrio, A., Rafanelli, M., 2001. A method to estimate the incidence of communicable diseases under seasonal fluctuations with application to cholera. Appl. Math. Comput. 118(2–3), 161–174.

    Article  MATH  MathSciNet  Google Scholar 

  • Ramsay, J.O., Hooker, G., Cao, C., Campbell, C., 2005. Estimating differential equations. Preprint, Department of Psychology, McGill University, Montreal, Canada, 40.

  • Ramsay, J.O., Hooker, G., Campbell, D., Cao, J., 2007. Parameter estimation for differential equations: a eneralized smoothing approach. J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 69(5), 741–796.

    Article  MathSciNet  Google Scholar 

  • Ruan, S., Wang, W., 2003. Dynamical behavior of an epidemic model with a nonlinear incidence rate. J. Differ. Equ. 188, 135–163.

    Article  MATH  MathSciNet  Google Scholar 

  • van den Driessche, P., Watmough, J., 2000. A simple SIS epidemic model with a backward bifurcation. J. Math. Biol. 40(6), 525–540.

    Article  MATH  MathSciNet  Google Scholar 

  • van den Driessche, P., Watmough, J., 2002. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1–2), 29–48.

    MATH  MathSciNet  Google Scholar 

  • Wang, W., 2006. Epidemic models with nonlinear infection forces. Math. Biosci. Eng. 3(1), 267–279.

    MATH  MathSciNet  Google Scholar 

  • Weber, A., Weber, M., Milligan, P., 2001. Modeling epidemics caused by respiratory syncytial virus (RSV). Math. Biosci. 172(2), 95–113.

    Article  MATH  MathSciNet  Google Scholar 

  • Xiao, D., Ruan, S., 2007. Global analysis of an epidemic model with nonmonotone incidence rate. Math. Biosci. 208(2), 419–429.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos A. Capistrán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capistrán, M.A., Moreles, M.A. & Lara, B. Parameter Estimation of Some Epidemic Models. The Case of Recurrent Epidemics Caused by Respiratory Syncytial Virus. Bull. Math. Biol. 71, 1890–1901 (2009). https://doi.org/10.1007/s11538-009-9429-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9429-3

Keywords

Navigation