Skip to main content
Log in

Continuous Models for Cell Migration in Tissues and Applications to Cell Sorting via Differential Chemotaxis

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Chemotaxis, the guided migration of cells in response to chemical gradients, is vital to a wide variety of biological processes, including patterning of the slime mold Dictyostelium, embryonic morphogenesis, wound healing, and tumor invasion. Continuous models of chemotaxis have been developed to describe many such systems, yet few have considered the movements within a heterogeneous tissue composed of multiple subpopulations. In this paper, a partial differential equation (PDE) model is developed to describe a tissue formed from two distinct chemotactic populations. For a “crowded” (negligible extracellular space) tissue, it is demonstrated that the model reduces to a simpler one-species system while for an “uncrowded” tissue, it captures both movement of the entire tissue (via cells attaching to/migrating within an extracellular substrate) and the within-tissue rearrangements of the separate cellular subpopulations. The model is applied to explore the sorting of a heterogeneous tissue, where it is shown that differential-chemotaxis not only generates classical sorting patterns previously seen via differential-adhesion, but also demonstrates new classes of behavior. These new phenomena include temporal dynamics consisting of a traveling wave composed of spatially sorted subpopulations reminiscent of Dictyostelium slugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alt, W., 1980. Biased random walk model for chemotaxis and related diffusion approximation. J. Math. Biol. 9, 147–177.

    Article  MATH  MathSciNet  Google Scholar 

  • Armstrong, N.J., Painter, K.J., Sherratt, J.A., 2006. A continuum approach to modelling cell-cell adhesion. J. Theor. Biol. 243, 98–113.

    Article  MathSciNet  Google Scholar 

  • Byrne, H., Owen, M., 2004. A new interpretation of the Keller–Segel model based on multiphase modelling. J. Math. Biol. 49, 604–626.

    Article  MATH  MathSciNet  Google Scholar 

  • Charron, F., Tessier-Lavigne, M., 2005. Novel brain wiring functions for classical morphogens: a role as graded positional cues in axon guidance. Development 132, 2251–2262.

    Article  Google Scholar 

  • Condeelis, J., Singer, R., Segall, J., 2005. The great escape: when cancer cells hijack the genes for chemotaxis and motility. Annu. Rev. Cell Dev. Biol. 21, 695–718.

    Article  Google Scholar 

  • Dallon, J., Othmer, H., 2004. How cellular movement determines the collective force generated by the Dictyostelium discoideum slug. J. Theor. Biol. 231, 203–222.

    Article  MathSciNet  Google Scholar 

  • Dormann, D., Weijer, C., 2006. Chemotactic cell movement during Dictyostelium development and gastrulation. Curr. Opin. Genet. Dev. 16, 367–373.

    Article  Google Scholar 

  • Early, A., Abe, T., Williams, J., 1995. Evidence for positional differentiation of prestalk cells and for a morphogenetic gradient in Dictyostelium. Cell 83, 91–99.

    Article  Google Scholar 

  • Feit, I., Pawlikowski, J., Zawilski, C., 2007. A model for cell type localization in the migrating slug of Dictyostelium discoideum based on differential chemotactic sensitivity to cAMP and differential sensitivity to suppression of chemotaxis by ammonia. J. Biosci. 32, 329–338.

    Article  Google Scholar 

  • Foty, R.A., Steinberg, M.S., 2004. Cadherin-mediated cell-cell adhesion and tissue segregation in relation to malignancy. Int. J. Dev. Biol. 48, 397–409.

    Article  Google Scholar 

  • Friedl, P., Brocker, E.B., 2000. The biology of cell locomotion within three-dimensional extracellular matrix. Cell Mol. Life Sci. 57, 41–64.

    Article  Google Scholar 

  • Gatenby, R., Gawlinski, E., 1996. A reaction–diffusion model of cancer invasion. Cancer Res. 56, 5745–5753.

    Google Scholar 

  • Gerisch, A., Chaplain, M., 2007. Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. J. Theor. Biol. 250, 684–704.

    Article  Google Scholar 

  • Glazier, J.A., Graner, F., 1993. Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E 47(3), 2128–2154.

    Article  Google Scholar 

  • Heldin, C.-H., Westermark., B., 1999. Mechanism of action and in vivo role of platelet-derived growth factor. Physiol. Rev. 79, 1283–1316.

    Google Scholar 

  • Hillen, T., 2002. Hyperbolic models for chemosensitive movement. Math. Models Methods Appl. Sci. 12(7), 1007–1034.

    Article  MATH  MathSciNet  Google Scholar 

  • Hillen, T., Painter, K., 2001. A parabolic model with bounded chemotaxis—prevention of overcrowding. Adv. Appl. Math. 26, 280–301.

    Article  MATH  MathSciNet  Google Scholar 

  • Hillen, T., Painter, K.J., 2009. A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217.

    Article  MATH  MathSciNet  Google Scholar 

  • Höfer, T., Sherratt, J., Maini, P., 1995. Dictyostelium discoideum: cellular self-organisation in an excitable biological medium. Proc. R. Soc. Lond. B 259, 249–257.

    Article  Google Scholar 

  • Keller, E., Segel, L., 1970. Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415.

    Article  Google Scholar 

  • Keller, E., Segel, L., 1971. Model for chemotaxis. J. Theor. Biol. 30, 225–234.

    Article  Google Scholar 

  • Kimmel, A., Firtel, R., 2004. Breaking symmetries: regulation of Dictyostelium development through chemoattractant and morphogen signal-response. Curr. Opin. Genet. Dev. 14, 540–549.

    Article  Google Scholar 

  • Larrivee, B., Karsan, A., 2000. Signaling pathways induced by vascular endothelial growth factor (review). Int. J. Mol. Med. 5, 447–456.

    Google Scholar 

  • Lauffenburger, D., Horwitz, A., 1996. Cell migration: a physically integrated molecular process. Cell 84, 359–369.

    Article  Google Scholar 

  • Luca, M., Chavez-Ross, A., Edelstein-Keshet, L., Mogilner, A., 2003. Chemotactic signaling, microglia, and Alzheimer’s disease senile plaques: is there a connection?. Bull. Math. Biol. 65, 693–730.

    Article  Google Scholar 

  • Matsukuma, S., Durston, A., 1979. Chemotactic cell sorting in Dictyostelium discoideum. J. Embryol. Exp. Morphol. 50, 243–251.

    Google Scholar 

  • Montell, D., 2006. The social lives of migrating cells in Drosophila. Curr. Opin. Genet. Dev. 16, 374–383.

    Article  Google Scholar 

  • Murdoch, C., Giannoudis, A., Lewis, C., 2004. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104, 2224–2234.

    Article  Google Scholar 

  • Murray, J., 2003. On the mechanochemical theory of biological pattern formation with application to vasculogenesis. C.R. Biol. 326, 239–252.

    Article  Google Scholar 

  • Nardi, J., 1994. Rearrangement of epithelial cell types in an insect wing monolayer is accompanied by differential expression of a cell surface protein. Dev. Dyn. 199, 315–325.

    Google Scholar 

  • Odell, G., Bonner, J.T., 1986. How the Dictyostelium discoideum grex crawls. Philos. Trans. R. Soc. Lond. 312, 487–525.

    Article  Google Scholar 

  • Othmer, H., Stevens, A., 1997. Aggregation, blowup and collapse: the ABC’s of generalized taxis. SIAM J. Appl. Math. 57, 1044–1081.

    Article  MATH  MathSciNet  Google Scholar 

  • Othmer, H., Dunbar, S., Alt, W., 1988. Models of dispersal in biological systems. J. Math. Biol. 26, 263–298.

    Article  MATH  MathSciNet  Google Scholar 

  • Painter, K., Sherratt, J.A., 2003. Modelling the movement of interacting cell populations. J. Theor. Biol. 225, 325–337.

    Article  MathSciNet  Google Scholar 

  • Painter, K., Maini, P., Othmer, H., 2000. Development and applications of a model for cellular response to multiple chemotactic cues. J. Math. Biol. 41, 285–314.

    Article  MATH  MathSciNet  Google Scholar 

  • Painter, K.J., Hillen, T., 2002. Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Q. 10, 501–544.

    MATH  MathSciNet  Google Scholar 

  • Palsson, E., Othmer, H., 2000. A model for individual and collective cell movement in Dictyostelium discoideum. Proc. Natl. Acad. Sci. USA 97, 10448–10453.

    Article  Google Scholar 

  • Pate, E., Othmer, H., 1986. Differentiation, cell sorting and proportion regulation in the slug stage of Dictyostelium discoideum. J. Theor. Biol. 118(3), 301–319.

    Article  MathSciNet  Google Scholar 

  • Patlak, C., 1953. Random walk with persistence and external bias. Bull. Math. Biophys. 15, 311–338.

    Article  MathSciNet  Google Scholar 

  • Sherratt, J.A., 2000. Wavefront propagation in a competition equation with a new motility term modelling contact inhibition between cell populations. Proc. R. Soc. Lond. A 456, 2365–2386.

    Article  MATH  MathSciNet  Google Scholar 

  • Sherratt, J.A., Nowak, M.A., 1992. Oncogenes, anti-oncogenes and the immune response to cancer. Proc. R. Soc. Lond. B 248, 261–272.

    Article  Google Scholar 

  • Simpson, M.J., Landman, K.A., Hughes, B.D., Newgreen, D., 2006. Looking inside an invasion wave of cells using continuum models: proliferation is the key. J. Theor. Biol. 243, 343–360.

    Article  MathSciNet  Google Scholar 

  • Steinberg, M.S., 2007. Differential adhesion in morphogenesis: a modern view. Curr. Opin. Gen. Dev. 17, 281–286.

    Article  Google Scholar 

  • Townes, P., Holtfreter, J., 1955. Directed movements and selective adhesion of embryonic amphibian cells. J. Exp. Zool. 128, 53–120.

    Article  Google Scholar 

  • Turing, A.M., 1952. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72.

    Article  Google Scholar 

  • Tyson, R., Lubkin, S., Murray, J., 1999. Model and analysis of chemotactic bacterial patterns in a liquid medium. J. Math. Biol. 38, 359–375.

    Article  MATH  MathSciNet  Google Scholar 

  • Umeda, T., 1993. A thermodynamical model of cell distributions in the slug of cellular slime mold. Bull. Math. Biol. 55, 451–464.

    MATH  Google Scholar 

  • Umeda, T., Inouye, K., 1999. Theoretical model for morphogenesis and cell sorting in Dictyosteilium discoideum. Physica D 126, 189–200.

    Google Scholar 

  • Umeda, T., Inouye, K., 2004. Cell sorting by differential cell motility: A model for pattern formation in Dictyostelium. J. Theor. Biol. 226, 215–224.

    Article  MathSciNet  Google Scholar 

  • Vasiev, B., Weijer, C., 1999. Modeling chemotactic cell sorting during Dictyostelium discoideum mound formation. Biophys. J. 76, 595–605.

    Article  Google Scholar 

  • Webb, S., Owen, M., Byrne, H., Murdoch, C., Lewis, C., 2007. Macrophage-based anti-cancer therapy: modelling different modes of tumour targeting. Bull. Math. Biol. 69, 1747–1776.

    Article  MATH  MathSciNet  Google Scholar 

  • Weiner, R., Schmitt, B., Podhaisky, H., 1997. Rowmap—a row-code with Krylov techniques for large stiff odes. Appl. Numer. Math. 25, 303–319.

    Article  MATH  MathSciNet  Google Scholar 

  • Wolpert, L., 1969. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1–47.

    Article  Google Scholar 

  • Woodward, D., Tyson, R., Myerscough, M., Murray, J., Budrene, E., Berg, H., 1995. Spatiotemporal patterns generated by Salmonella-typhimurium. Biophys. J. 68(5), 2181–2189.

    Article  Google Scholar 

  • Wu, D., 2005. Signaling mechanisms for regulation of chemotaxis. Cell Res. 15, 52–56.

    Article  Google Scholar 

  • Yang, X., Dormann, D., Münsterberg, A., Weijer, C., 2002. Cell movement patterns during gastrulation in the chick are controlled by positive and negative chemotaxis mediated by FGF4 and FGF8. Dev. Cell 3, 425–437.

    Article  Google Scholar 

  • Yue, Q., Wagstaff, L., Yang, X., Weijer, C., Münsterberg, A., 2008. Wnt3a-mediated chemorepulsion controls movement patterns of cardiac progenitors and requires RhoA function. Development 135, 1029–1037.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Painter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Painter, K.J. Continuous Models for Cell Migration in Tissues and Applications to Cell Sorting via Differential Chemotaxis. Bull. Math. Biol. 71, 1117–1147 (2009). https://doi.org/10.1007/s11538-009-9396-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-009-9396-8

Keywords

Navigation