Skip to main content
Log in

A Nonautonomous Phenomenological Model for On and Off Responses of Cells in Sensory System

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Many neurons in mammalian sensory systems exhibit On and Off responses when given appropriate excitatory and inhibitory stimuli. In some instances, such neurons can also exhibit a Mixed response where diminished On and Off responses are both present. In this manuscript, we present a simple single cell model for these ubiquitous stimulus-response patterns. The model is nonautonomous consisting of two fast variables (one being the voltage), one slow recovery variable, and a time dependent stimuli current I(t). For piecewise constant I(t), On and Off responses can be reproduced and it is shown that their dependence on both the duration and the intensity of the input can be derived using singular perturbation techniques. Furthermore, we show that for certain stimuli I(t) the voltage has spike trains both during and immediately after the stimuli is presented. Such Mixed responses have also been measured experimentally, and the current model reproduces all three responses robustly for different net synaptic currents I(t).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bertram, R., Butte, M., Kiemel, T., Sherman, A., 1995. Topological and phenomenological classification of bursting oscillations. Bull. Math. Biol. 57, 413–439.

    MATH  Google Scholar 

  • Bressloff, P., Cowan, J., 2002. Spontaneous pattern formation in primary visual cortex. In: Hogan, S.J., Champneys, A., Krauskopf, B. (Eds.), Nonlinear Dynamics: Where do We Go from Here? Institute of Physics, Bristol.

    Google Scholar 

  • Brumberg, J.C., Nowak, L.G., McCormick, D.A., 2000. Ionic mechanisms underlying repetitive high-frequency burst firing in supragranular cortical neurons. J. Neurosci. 20, 4829–4843.

    Google Scholar 

  • Butera, R., Clark, J., Canavier, C., Baxter, D., Byrne, J., 1995. Analysis of the effects of modulatory agents on a modeled bursting neuron: Dynamic interactions between voltage and calcium dependent systems. J. Comput. Neurosci. 2, 19–44.

    Article  Google Scholar 

  • Chay, T.R., Cook, D.L., 1988. Endogenous bursting patterns in excitable cells. Math. Biosci. 90, 139–153.

    Article  MathSciNet  Google Scholar 

  • Connors, B.W., Gutnick, M.J., 1990. Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci. 13, 99–104.

    Article  Google Scholar 

  • D’Angelo, E., Nieus, T., Maffei, A., Armano, S., Rossi, P., Taglietti, V., Fontana, A., Naldi, G., 2001. Theta-frequency bursting and resonance in cerebellar granule cells: Experimental evidence and modeling of a slow K +-dependent mechanism. J. Neurosci. 21(3), 759–770.

    Google Scholar 

  • De Vries, G., 1998. Multiple bifurcations in a polynomial model of bursting oscillations. J. Nonlinear Sci. 8, 281–316.

    Article  MATH  MathSciNet  Google Scholar 

  • Ermentrout, B., 2002. Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. SIAM, Philadelphia.

    MATH  Google Scholar 

  • Evans, E.F., 1992. Auditory processing of complex sounds: An overview. Philos. Trans. R. Soc. Lond. B Biol. Sci. 336(1278), 295–306.

    Article  Google Scholar 

  • FitzHugh, R., 1961. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466.

    Article  Google Scholar 

  • Gibson, J.R., Belerlein, M., Connors, B.W., 1999. Two networks of electrically coupled inhibitory neurons in neocortex. Nature 402, 75–79.

    Article  Google Scholar 

  • Griffiths, R., Pernarowski, M., 2006. Return map characterizations of for a model of bursting with two slow variables. SIAM J. Appl. Math. 66, 1917–1948.

    Article  MATH  MathSciNet  Google Scholar 

  • Hartings, J., Temereanca, S., Simons, D., 2000. High responsiveness and direction sensitivity of neurons in the rat thalamic reticular nucleus to vibrissa deflections. J. Neurophysiol. 83, 2791–2801.

    Google Scholar 

  • He, J., 2002. Off responses in the auditory thalamus of the guinea pig. J. Neurophysiol. 88, 2377–2386.

    Article  Google Scholar 

  • Hubel, D.H., Wiesel, T.N., 1959. Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. 148, 574–591.

    Google Scholar 

  • Izhikevich, E., 2004. Which model to use for cortical spiking neurons. IEEE Trans. Neural Netw. 15, 1063–1070 (special issue on temporal coding).

    Article  Google Scholar 

  • Koch, C., 2001. Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, New York.

    Google Scholar 

  • Kuffler, S.W., 1953. Discharge patterns and functional organization of the Mammilian Retina. J. Neurophysiol. 16(16), 37–68.

    Google Scholar 

  • Lancaster, B., Nicoll, R.A., Perkel, D.J., 1991. Calcium acivates two types of potassium channels in Rat Hippocampal neurons in culture. J. Neurosci. 11(1), 23–30.

    Google Scholar 

  • Latulippe, J.J., 2007. A non-autonomous bursting model for neurons. Ph.D. thesis, Department of Mathematical Sciences, Montana State University, Bozeman.

  • Lytton, W., Sejnowski, T.J., 1991. Simulations of cortical pyramidal neurons synchronized by inhibitory interneurons. J. Neurophysiol. 66(3), 1059–1079.

    Google Scholar 

  • McCormick, D.A., Gray, C.M., 1996. Chattering cells: Superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex. Science 274(5284), 109–113.

    Article  Google Scholar 

  • Morris, C., Lecar, H., 1981. Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193–213.

    Google Scholar 

  • Pernarowski, M., 1994. Fast subsystem bifurcations in a slowly varying Lienard system exhibiting bursting. SIAM J. Appl. Math. 54, 814–832.

    Article  MATH  MathSciNet  Google Scholar 

  • Pernarowski, M., 1998. Fast and slow subsystems for a continuum model of bursting activity in the pancreatic islet. SIAM J. Appl. Math. 58, 1667–1687.

    Article  MATH  MathSciNet  Google Scholar 

  • Pernarowski, M., 2001. Controllability of excitable systems. Bull. Math. Biol. 63, 167–184.

    Article  Google Scholar 

  • Pernarowski, M., Miura, R.M., Kevorkian, J., 1992. Perturbation techniques for models of bursting electrical activity in pancreatic β-cells. SIAM J. Appl. Math. 52, 1627–1650.

    Article  MATH  MathSciNet  Google Scholar 

  • Rinzel, J., Lee, Y., 1987. Dissection of a model for neuronal parabolic bursting. J. Math. Biol. 25, 653–675.

    Article  MATH  MathSciNet  Google Scholar 

  • Schwindt, P.C., Spain, W.J., Foehring, R.C., Chubb, M.C., Crill, W.E., 1988. Slow conductances in neurons from cat sensorimotor cortex in vitro and their role in slow excitability changes. J Neurophysiol. 59(2), 450–467.

    Google Scholar 

  • Smolen, P., Keizer, J., 1992. Slow voltage-inactivation of Ca2+ currents and bursting mechanisms for the mouse pancreatic β-cell. J. Memb. Biol. 127, 9–19.

    Article  Google Scholar 

  • Steriade, M., 1997. Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance. Cereb. Cortex 7, 583–604.

    Article  Google Scholar 

  • Terman, D., 1991. Chaotic spikes arising from a model of bursting in excitable membrane. SIAM J. Appl. Math. 51, 1418–1450.

    Article  MATH  MathSciNet  Google Scholar 

  • Wang, X.-J., 1999. Fast burst firing and short-term synaptic plasticity: A model of neocortical chattering neurons. Neuroscience 89(2), 347–362.

    Article  Google Scholar 

  • Wang, G.-Y., Liets, L.C., Chalupa, L.M., 2003. Nitric oxide differentially modulates on and off responses of retinal ganglion cells. J. Neurophysiol. 90, 1304–1313.

    Article  Google Scholar 

  • Wielaard, D.J., Shelley, M., McLaughlin, D., Shapley, R., 2001. How simple cells are made in a nonlinear network model of the visual cortex. J. Neurosci. 21, 5203–5211.

    Google Scholar 

  • Wilson, H.R., Cowan, J.D., 1972. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys.  J. 12, 1–24.

    Google Scholar 

  • Wilson, H.R., Cowan, J.D., 1973. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55–80.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pernarowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latulippe, J., Pernarowski, M. A Nonautonomous Phenomenological Model for On and Off Responses of Cells in Sensory System. Bull. Math. Biol. 71, 162–188 (2009). https://doi.org/10.1007/s11538-008-9358-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9358-6

Keywords

Navigation