Skip to main content

Stochastic Partial Differential Equations in Neurobiology: Linear and Nonlinear Models for Spiking Neurons

  • Chapter
  • First Online:
Stochastic Biomathematical Models

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 2058))

Abstract

Stochastic differential equation (SDE) models of nerve cells for the most part neglect the spatial dimension. Including the latter leads to stochastic partial differential equations (SPDEs) which allow for the inclusion of important variations in the densities of ion channels. In the first part of this work, we briefly consider representations of neuronal anatomy in the context of linear SPDE models on line segments with one and two components. Such models are reviewed and analytical methods illustrated for finding solutions as series of Ornstein–Uhlenbeck processes. However, only nonlinear models exhibit natural spike thresholds and admit traveling wave solutions, so the rest of the article is concerned with spatial versions of the two most studied nonlinear models, the Hodgkin–Huxley system and the FitzHugh–Nagumo approximation. The ion currents underlying neuronal spiking are first discussed and a general nonlinear SPDE model is presented. Guided by recent results for noise-induced inhibition of spiking in the corresponding system of ordinary differential equations, in the spatial Hodgkin–Huxley model, excitation is applied over a small region and the spiking activity observed as a function of mean stimulus strength with a view to finding the critical values for repetitive firing. During spiking near those critical values, noise of increasing amplitudes is applied over the whole neuron and over restricted regions. Minima have been found in the spike counts which parallel results for the point model and which have been termed inverse stochastic resonance. A stochastic FitzHugh–Nagumo system is also described and results given for the probability of transmission along a neuron in the presence of noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Austin, T.D.: The emergence of the deterministic Hodgkin-Huxley equations as a limit from the underlying stochastic ion-channel mechanism. Ann. Appl. Probab. 18, 1279–1325 (2008)

    Google Scholar 

  2. Bergé, B., Chueshov, I.D., Vuillermot, P.A.: On the behavior of solutions to certain parabolic SPDEs driven by Wiener processes. Stoch. Proc. Appl. 92, 237–263 (2001)

    Google Scholar 

  3. Burlhis, T.M., Aghajanian, G.K.: Pacemaker potentials of serotonergic dorsal raphe neurons: contribution of a low-threshold Ca2 +  conductance. Synapse 1, 582–588 (1987)

    Google Scholar 

  4. Destexhe, A., Sejnowski, O.: Thalamocortical Assemblies. Oxford University Press, Oxford (2001)

    Google Scholar 

  5. Ditlevsen, S., Ditlevsen, O.: Parameter estimation from observations of first-passage times of the Ornstein-Uhlenbeck process and the Feller process. Probabilist. Eng. Mech. 23, 170–179 (2008)

    Google Scholar 

  6. Ditlevsen, S., Lansky, P.: Estimation of the input parameters in the Ornstein-Uhlenbeck neuronal model. Phys. Rev. E 71, Art. No. 011,907 (2005)

    Google Scholar 

  7. Dodge, F.A., Cooley, J.: Action potential of the motoneuron. IBM J. Res. Devel. 17, 219–229 (1973)

    Google Scholar 

  8. Dolphin, A.C.: Calcium channel diversity: multiple roles of calcium channel subunits. Curr. Opin. Neurobiol. 19, 237–244 (2009)

    Google Scholar 

  9. FitzHugh, R.: Mathematical models of excitation and propagation in nerve. In: Biological Engineering. McGrawHill, New York (1969)

    Google Scholar 

  10. Gerstein, G.L., Mandelbrot, B.: Random walk models for the spike activity of a single neuron. Biophys. J. 4, 4168 (1964)

    Google Scholar 

  11. Gluss, B.: A model for neuron firing with exponential decay of potential resulting in diffusion equations for probability density. Bull. Math. Biophys. 29, 233–243 (1967)

    Google Scholar 

  12. Goldfinger, M.D.: Poisson process stimulation of an excitable membrane cable model. Biophys. J. 50, 27–40 (1986)

    Google Scholar 

  13. Gutkin, B.S., Jost, J., Tuckwell, H.C.: Inhibition of rhythmic neural spiking by noise: the occurrence of a minimum in activity with increasing noise. Naturwissenschaften 96, 1091–1097 (2009)

    Google Scholar 

  14. Gutman, G.A., Chandy, K.G., Grissmer, S., Lazdunski, M., McKinnon, D., Pardo, L.A., Robertson, G.A., Rudy, B., Sanguinetti, M.C., Stuhmer, W., Wang, X.: International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol. Rev. 57, 473,508 (2005)

    Google Scholar 

  15. Hanson, F.B., Tuckwell, H.C.: Diffusion approximations for neuronal activity including synaptic reversal potentials. J. Theoret. Neurobiol. 2, 127–153 (1983)

    Google Scholar 

  16. Hellwig, B.: A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biol. Cybern. 82, 111–121 (2000)

    Google Scholar 

  17. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  18. Horikawa, Y.: Noise effects on spike propagation in the stochastic Hodgkin-Huxley models. Biol. Cybern. 66, 19–25 (1991)

    Google Scholar 

  19. Iannella, N., Tanaka, S., Tuckwell, H.C.: Firing properties of a stochastic PDE model of a rat sensory cortex layer 2/3 pyramidal cell. Math. Biosci. 188, 117–132 (2004)

    Google Scholar 

  20. Kallianpur, G., Xiong, J.: Diffusion approximation of nuclear space-valued stochastic differential equations driven by Poisson random measures. Ann. Appl. Probab. 5, 493–517 (1995)

    Google Scholar 

  21. Koch, C.: Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press, Oxford (1999)

    Google Scholar 

  22. Komendantov, A.O., Tasker, J.G., Trayanova, N.A.: Somato-dendritic mechanisms underlying the electrophysiological properties of hypothalamic magnocellular neuroendocrine cells: A multicompartmental model study. J. Comput. Neurosci. 23, 143–168 (2007)

    Google Scholar 

  23. Levitan, I.B., Kaczmarek, L.K.: Neuromodulation. Oxford University Press, Oxford (1987)

    Google Scholar 

  24. Lindner, B., Garcia-Ojalvo, J., Neiman, A., Schimansky-Geier, L.: Effects of noise in excitable systems. Phys. Rep. 392, 321–424 (2004)

    Google Scholar 

  25. Llinas, R.: The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242, 1654–1664 (1988)

    Google Scholar 

  26. Mainen, Z.F., Joerges, J., Huguenard, J.R., Sejnowski, T.J.: A model of spike initiation in neocortical pyramidal neurons. Neuron 15, 1427–1439 (1995)

    Google Scholar 

  27. Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., Wu, C.: Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 5, 793–807 (2004)

    Google Scholar 

  28. McCormick, D.A., Huguenard, J.R.: A model of the electrophysiological properties of thalamocortical relay neurons. J. Neurophysiol. 68, 1384–1400 (1992)

    Google Scholar 

  29. Megías, M., Emri, Z.S., Freund, T.F., Gulyás, A.I.: Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102, 527–540 (2001)

    Google Scholar 

  30. Meir, A., Ginsburg, S., Butkevich, A., Kachalsky, S.G., Kaiserman, I., Ahdut, R., Demirgoren, S., Rahamimoff, R.: Ion channels in presynaptic nerve terminals and control of transmitter release. Physiol. Rev. 79, 1020–1088 (1999)

    Google Scholar 

  31. Rhodes, P.A., Llinas, R.: A model of thalamocortical relay cells. J. Physiol. 565, 765–781 (2005)

    Google Scholar 

  32. Roy, B.K., Smith, D.R.: Analysis of the exponential decay model of the neuron showing frequency threshold effects. Bull. Math. Biophys. 31, 341–357 (1969)

    Google Scholar 

  33. Sholl, D.: The Organization of the Cerebral Cortex. Methuen, London (1956)

    Google Scholar 

  34. Shu, Y., Hasenstaub, A., Badoual, M., Bal, T., McCormick, D.A.: Barrages of synaptic activity control the gain and sensitivity of cortical neurons. J. Neurosci. 23, 10388–10401 (2003)

    Google Scholar 

  35. Skaugen, E., Walloe, L.: Firing behaviour in a stochastic nerve membrane model based upon the Hodgkin-Huxley equations. Acta Physiol. Scand. 107, 343–363 (1979)

    Google Scholar 

  36. Spruston, N.: Pyramidal neurons: dendritic structure and synaptic integration. Nat. Rev. Neurosci. 9, 206–221 (2008)

    Google Scholar 

  37. Traub, R.D.: Motoneurons of different geometry and the size principle. Biol. Cybern. 25, 163–175 (1977)

    Google Scholar 

  38. Traub, R.D.: Neocortical pyramidal cells: a model with dendritic calcium conductance reproduces repetitive firing and epileptic behavior. Brain Res. 173, 243–257 (1979)

    Google Scholar 

  39. Tuckwell, H.C.: Synaptic transmission in a model for stochastic neural activity. J. Theor. Biol. 77, 65–81 (1979)

    Google Scholar 

  40. Tuckwell, H.C.: Poisson Processes in Biology. In: Stochastic Nonlinear Systems, pp. 162–172. Springer, Berlin (1981)

    Google Scholar 

  41. Tuckwell, H.C.: Stochastic equations for nerve membrane potential. J. Theoret. Neurobiol. 5, 87–99 (1986)

    Google Scholar 

  42. Tuckwell, H.C.: Introduction to Theoretical Neurobiology, vol. 1: Linear Cable Theory and Dendritic Structure. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  43. Tuckwell, H.C.: Introduction to Theoretical Neurobiology, vol. 2: Nonlinear and Stochastic Theories. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  44. Tuckwell, H.C.: Stochastic Processes in the Neurosciences. SIAM, Philadelphia (1989)

    Google Scholar 

  45. Tuckwell, H.C.: Spatial neuron model with two-parameter Ornstein-Uhlenbeck input current. Phys. A 368, 495–510 (2006)

    Google Scholar 

  46. Tuckwell, H.C.: Analytical and simulation results for the stochastic spatial FitzHugh-Nagumo neuron. Neural Comput. 20, 3003–3035 (2008)

    Google Scholar 

  47. Tuckwell, H.C., Jost, J.: Weak noise in neurons may powerfully inhibit the generation of repetitive spiking but not its propagation. PLoS Comp. Biol. 6, e1000794 (2010)

    Google Scholar 

  48. Tuckwell, H.C., Jost, J.: The effects of various spatial distributions of weak noise on rhythmic spiking. J. Comp. Neurosci. 30, 361–371 (2011)

    Google Scholar 

  49. Tuckwell, H.C., Walsh, J.B.: Random currents through nerve membranes. Biol. Cybern. 49, 99–110 (1983)

    Google Scholar 

  50. Tuckwell, H.C., Wan, F.Y.M., Wong, Y.S.: The interspike interval of a cable model neuron with white noise input. Biol. Cybern. 49, 155–167 (1984)

    Google Scholar 

  51. Tuckwell, H.C., Wan, F.Y.M., Rospars, J.P.: A spatial stochastic neuronal model with Ornstein-Uhlenbeck input current. Biol. Cybern. 86, 137–145 (2002)

    Google Scholar 

  52. Tuckwell, H.C., Jost, J., Gutkin, B.S.: Inhibition and modulation of rhythmic neuronal spiking by noise. Phys. Rev. E 80, 031907 (2009)

    Google Scholar 

  53. Watts, J., Thomson, A.M.: Excitatory and inhibitory connections show selectivity in the neocortex. J. Physiol. 562.1, 89–97 (2005)

    Google Scholar 

  54. Zhang, X., You, G., Chen, T., Feng, J.: Maximum likelihood decoding of neuronal inputs from an interspike interval distribution. Neural Comput. 21, 1–27 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry C. Tuckwell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tuckwell, H.C. (2013). Stochastic Partial Differential Equations in Neurobiology: Linear and Nonlinear Models for Spiking Neurons. In: Bachar, M., Batzel, J., Ditlevsen, S. (eds) Stochastic Biomathematical Models. Lecture Notes in Mathematics(), vol 2058. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32157-3_6

Download citation

Publish with us

Policies and ethics