Skip to main content

Advertisement

Log in

A Phantom Bursting Mechanism for Episodic Bursting

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We describe a novel dynamic mechanism for episodic or compound bursting oscillations, in which bursts of electrical impulses are clustered together into episodes, separated by long silent phases. We demonstrate the mechanism for episodic bursting using a minimal mathematical model for “phantom bursting.” Depending on the location in parameter space, this model can produce fast, medium, or slow bursting, or in the present case, fast, slow, and episodic bursting. The episodic bursting is modestly robust to noise and to parameter variation, and the effect that noise has on the episodic bursting pattern is quite different from that of an alternate episodic burst mechanism in which the slow envelope is produced by metabolic oscillations. This mechanism could account for episodic bursting produced in endocrine cells or neurons, such as pancreatic islets or gonadotropin releasing neurons of the hypothalamus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alving, B.O., 1986. Spontaneous activity in isolated somata of Aplysia pacemaker neurons. J. Gen. Physiol. 51, 29–5.

    Article  Google Scholar 

  • Atwater, I., Rosario, L., Rojas, E., 1983. Properties of the Ca-activated K+ channel in pancreatic β-cells. Cell Calcium 4, 451–61.

    Article  Google Scholar 

  • Baer, S.M., Erneux, T., Rinzel, J., 1989. The slow passage through a Hopf bifurcation: delay, memory effects, and resonance. SIAM J. Appl. Math. 49, 55–1.

    Article  MATH  MathSciNet  Google Scholar 

  • Bertram, R., Sherman, A., 2004. A calcium-based phantom bursting model for pancreatic islets. Bull. Math. Biol. 66, 1313–344.

    Article  MathSciNet  Google Scholar 

  • Bertram, R., Butte, M., Kiemel, T., Sherman, A., 1995. Topological and phenomenological classification of bursting oscillations. Bull. Math. Biol. 57, 413–39.

    MATH  Google Scholar 

  • Bertram, R., Previte, J., Sherman, A., Kinard, T.A., Satin, L.S., 2000. The phantom burster model for pancreatic β-cells. Biophys. J. 79, 2880–892.

    Article  Google Scholar 

  • Bertram, R., Satin, L., Zhang, M., Smolen, P., Sherman, A., 2004. Calcium and glycolysis mediate multiple bursting modes in pancreatic islets. Biophys. J. 87, 3074–087.

    Article  Google Scholar 

  • Bertram, R., Sherman, A., Satin, L.S., 2007. Metabolic and electrical oscillations: partners in controlling pulsatile insulin secretion. Am. J. Physiol. 293, E890–E900.

    Google Scholar 

  • Chay, T.R., Kang, H.S., 1988. Role of single-channel stochastic noise on bursting clusters of pancreatic β-cells. Biophys. J. 54, 427–35.

    Article  Google Scholar 

  • Chay, T.R., Keizer, J., 1983. Minimal model for membrane oscillations in the pancreatic β-cell. Biophys. J. 42, 181–90.

    Article  Google Scholar 

  • Chay, T.R., Rinzel, J., 1985. Bursting, beating, and chaos in an excitable membrane model. Biophys. J. 47, 357–66.

    Article  Google Scholar 

  • Coombes, S., Bressloff, P.C. (Eds.), 2005. Bursting: The Genesis of Rhythm in the Nervous System. World Scientific, Singapore.

    MATH  Google Scholar 

  • Crunelli, V., Kelly, J.S., Leresche, N., Pirchio, M., 1987. The ventral and dorsal lateral geniculate nucleus of the rat: intracellular recordings in vitro. J. Physiol. (Lond.) 384, 587–01.

    Google Scholar 

  • de Vries, G., Sherman, A., 2000. Channel sharing in pancreatic β-cells revisited: enhancement of emergent bursting by noise. J. Theor. Biol. 207, 513–30.

    Article  Google Scholar 

  • Dean, P.M., Mathews, E.K., 1970. Glucose-induced electrical activity in pancreatic islet cells. J. Physiol. 210, 255–64.

    Google Scholar 

  • Del Negro, C.A., Hsiao, C.-F., Chandler, S.H., Garfinkel, A., 1998. Evidence for a novel bursting mechanism in rodent trigeminal neurons. Biophys. J. 75, 174–82.

    Article  Google Scholar 

  • Ermentrout, G.B., 2002. Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. SIAM, Philadelphia.

    MATH  Google Scholar 

  • Fox, R.F., 1997. Stochastic versions of the Hodgkin–Huxley equations. Biophys. J. 72, 2068–074.

    Article  Google Scholar 

  • Henquin, J.C., Meissner, H.P., Schmeer, W., 1982. Cyclic variations of glucose-induced electrical activity in pancreatic B cells. Pflügers Arch. 393, 322–27.

    Article  Google Scholar 

  • Kinard, T.A., Vries, G., Sherman, A., Satin, L.S., 1999. Modulation of the bursting properties of single mouse pancreatic β-cells by artificial conductances. Biophys. J. 76, 1423–435.

    Article  Google Scholar 

  • Kuehl-Kovarik, M.C., Pouliot, W.A., Halterman, G.L., Handa, R.J., Dubek, F.E., Partin, K.M., 2002. Episodic bursting activity and response to excitatory amino acids in acutely dissociated gonadotropin-releasing hormone neurons genetically targeted with green fluorescent protein. J. Neurosci. 22, 2313–322.

    Google Scholar 

  • Pedersen, M.G., 2007. Phantom bursting is highly sensitive to noise and unlikely to account for slow bursting in β-cells: considerations in favor of metabolically driven oscillations. J. Theor. Biol. 248, 391–00.

    Article  Google Scholar 

  • Rinzel, J., 1985. Bursting oscillations in an excitable membrane model. In: Sleeman, B.D., Jarvis, R.J. (Eds.), Ordinary and Partial Differential Equations, Lecture Notes in Mathematics, pp. 304–16. Springer, New York.

    Chapter  Google Scholar 

  • Rinzel, J., 1987. A formal classification of bursting mechanisms in excitable systems. In: Teramoto, E., Yamaguti, M. (Eds.), Mathematical Topics in Population Biology, Morphogenesis and Neurosciences. Springer, Berlin.

    Google Scholar 

  • Rinzel, J., Ermentrout, G.B., 1998. Analysis of neural excitability and oscillations. In: Koch, C., Segev, I. (Eds.), Methods in Neuronal Modeling: From Ions to Networks, pp. 251–91. MIT Press, Cambridge.

    Google Scholar 

  • Sherman, A., Rinzel, J., Keizer, J., 1988. Emergence of organized bursting in clusters of pancreatic β-cells by channel sharing. Biophys. J. 54, 411–25.

    Article  Google Scholar 

  • Smolen, P., Terman, D., Rinzel, J., 1993. Properties of a bursting model with two slow inhibitory variables. SIAM J. Appl. Math. 53, 861–92.

    Article  MATH  MathSciNet  Google Scholar 

  • Stojilkovic, S.S., Kukuljan, M., Iida, T., Rojas, E., Catt, K.J., 1992. Integration of cytoplasmic calcium and membrane potential oscillations maintains calcium signaling in pituitary gonadotrophs. Proc. Natl. Acad. Sci. 89, 4081–085.

    Article  Google Scholar 

  • Suter, K.J., Wuarin, J.-P., Smith, B.N., Dudek, F.E., Moenter, S.M., 2000. Whole-cell recordings from preoptic/hypothalamic slices reveal burst firing in gonadotropin-releasing hormone neurons identified with green fluorescent protein in transgenic mice. Endocrinology 141, 3731–736.

    Article  Google Scholar 

  • Terman, D., 1992. The transition from bursting to continuous spiking in excitable membrane models. J. Nonlinear Sci. 2, 135–82.

    Article  MATH  MathSciNet  Google Scholar 

  • Tornheim, K., 1997. Are metabolic oscillations responsible for normal oscillatory insulin secretion?. Diabetes 46, 1375–380.

    Article  Google Scholar 

  • Wong, R.K.S., Prince, D.A., 1981. Afterpotential generation in hippocampal pyramidal cells. J. Neurophysiol. 45, 86–7.

    Google Scholar 

  • Zhang, M., Goforth, P., Sherman, A., Bertram, R., Satin, L., 2003. The Ca2+ dynamics of isolated mouse β-cells and islets: implications for mathematical models. Biophys. J. 84, 2852–870.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Bertram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertram, R., Rhoads, J. & Cimbora, W.P. A Phantom Bursting Mechanism for Episodic Bursting. Bull. Math. Biol. 70, 1979–1993 (2008). https://doi.org/10.1007/s11538-008-9335-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-008-9335-0

Keywords

Navigation