Skip to main content
Log in

Fractional Reproduction-Dispersal Equations and Heavy Tail Dispersal Kernels

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Reproduction-Dispersal equations, called reaction-diffusion equations in the physics literature, model the growth and spreading of biological species. Integro-Difference equations were introduced to address the shortcomings of this model, since the dispersal of invasive species is often more widespread than what the classical RD model predicts. In this paper, we extend the RD model, replacing the classical second derivative dispersal term by a fractional derivative of order 1<α ≤ 2. Fractional derivative models are used in physics to model anomalous super-diffusion, where a cloud of particles spreads faster than the classical diffusion model predicts. This paper also establishes a connection between the new RD model and a corresponding ID equation with a heavy tail dispersal kernel. The general theory developed here accommodates a wide variety of infinitely divisible dispersal kernels that adapt to any scale. Each one corresponds to a generalised RD model with a different dispersal operator. The connection established here between RD and ID equations can also be exploited to generate convergent numerical solutions of RD equations along with explicit error bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aban, I.B., Meerschaert, M.M., 2001. Shifted Hill’s estimator for heavy tails. Commun. Stat. Simul. Comput. 30(4), 949–62.

    Article  MATH  MathSciNet  Google Scholar 

  • Aban, I.B., Meerschaert, M.M., 2004. Generalized least squares estimators for the thickness of heavy tails. J. Stat. Plan. Inference 119(2), 341–52.

    Article  MATH  MathSciNet  Google Scholar 

  • Aban, I.B., Meerschaert, M.M., Panorska, A.K., 2006. Parameter estimation for the truncated Pareto distribution. J. Am. Stat. Assoc. Theory Methods 101(473), 270–77.

    Article  MATH  MathSciNet  Google Scholar 

  • Arendt, W., Batty, C., Hieber, M., Neubrander, F., 2001. Vector-Valued Laplace Transforms and Cauchy Problems. Monographs in Mathematics. Birkhaeuser-Verlag, Berlin.

    MATH  Google Scholar 

  • Arendt, W., Grabosch, A., Greiner, G., Groh, U., Lotz, H.P., Moustakas, U., Nagel, R., Neubrander, F., Schlotterbeck, U., 1986. One-Parameter Semigroups of Positive Operators. Lecture Notes in Mathematics, vol. 1184. Springer, Berlin.

    MATH  Google Scholar 

  • Baeumer, B., Meerschaert, M.M., Benson, D.A., Wheatcraft, S.W., 2001. Subordinated advection-dispersion equation for contaminant transport. Water Resour. Res. 37, 1543–550.

    Article  Google Scholar 

  • Baeumer, B., Meerschaert, M.M., Kovacs, M., 2007. Numerical solutions for fractional reaction-diffusion equations. Comput. Math. Appl., to appear.

  • Barkai, E., Metzler, R., Klafter, J., 2000. From continuous time random walks to the fractional Fokker–Planck equation. Phys. Rev. E 61, 132–38.

    Article  MathSciNet  Google Scholar 

  • Benson, D., Wheatcraft, S., Meerschaert, M., 2000a. Application of a fractional advection-dispersion equation. Water Resour. Res. 36(6), 1403–412.

    Article  Google Scholar 

  • Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M., 2000b. The fractional-order governing equation of Lévy motion. Water Resour. Res. 36, 1413–424.

    Article  Google Scholar 

  • Benson, D.A., Schumer, R., Meerschaert, M.M., Wheatcraft, S.W., 2001. Fractional dispersion, Lévy motions, and the MADE tracer tests. Transp. Porous Media 42, 211–40.

    Article  MathSciNet  Google Scholar 

  • Blumen, A., Zumofen, G., Klafter, J., 1989. Transport aspects in anomalous diffusion: Lévy walks. Phys. Rev. A 40, 3964–973.

    Article  Google Scholar 

  • Bouchaud, J., Georges, A., 1990. Anomalous diffusion in disordered media—statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–93.

    Article  MathSciNet  Google Scholar 

  • Brézis, H., Pazy, A., 1972. Convergence and approximation of semigroups of nonlinear operators in Banach spaces. J. Funct. Anal. 9, 63–4.

    Article  MATH  Google Scholar 

  • Bullock, J.M., Clarke, R.T., 2000. Long distance seed dispersal by wind: measuring and modelling the tail of the curve. Oecologia 124(4), 506–21.

    Article  Google Scholar 

  • Chaves, A., 1998. A fractional diffusion equation to describe Lévy flights. Phys. Lett. A 239, 13–6.

    Article  MATH  MathSciNet  Google Scholar 

  • Clark, J.S., Silman, M., Kern, R., Macklin, E., HilleRisLambers, J., 1999. Seed dispersal near and far: patterns across temperate and tropical forests. Ecology 80(5), 1475–494.

    Google Scholar 

  • Clark, J.S., Lewis, M., Horvath, L., 2001. Invasion by extremes: population spread with variation in dispersal and reproduction. Am. Nat. 157(5), 537–54.

    Article  Google Scholar 

  • Cliff, M., Goldstein, J.A., Wacker, M., 2004. Positivity, Trotter products, and blow-up. Positivity 8(2), 187–08.

    Article  MATH  MathSciNet  Google Scholar 

  • del Castillo-Negrete, D., Carreras, B.A., Lynch, V.E., 2003. Front dynamics in reaction-diffusion systems with levy flights: a fractional diffusion approach. Phys. Rev. Lett. 91(1), 018302.

    Article  Google Scholar 

  • Deng, Z., Singh, V.P., Bengtsson, L., 2004. Numerical solution of fractional advection-dispersion equation. J. Hydraul. Eng. 130, 422–31.

    Article  Google Scholar 

  • Engel, K.J., Nagel, R., 2000. One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics, vol. 194. Springer, New York.

    MATH  Google Scholar 

  • Feller, W., 1966. An Introduction to Probability Theory and Applications, vols. I and II. Wiley, New York.

    Google Scholar 

  • Fisher, R.A., 1937. The wave of advances of advantageous genes. Ann. Eugen. 7, 353–69.

    Google Scholar 

  • Gnedenko, B., Kolmogorov, A., 1968. Limit Distributions for Sums of Independent Random Variables. Addison–Wesley, Reading. Translated from the Russian, annotated, and revised by K.L. Chung. With appendices by J.L. Doob and P.L. Hsu. Revised edn.

    Google Scholar 

  • Gorenflo, R., Mainardi, F., Scalas, E., Raberto, M., 2001. Problems with using existing transport models to describe microbial transport in porous media. In: Trends Math. American Society for Microbiology, Mathematical Finance, pp. 171–80 (Konstanz, 2000).

  • Heyde, C.C., Leonenko, N.N., 2005. Student processes. Adv. Appl. Probab. 37, 342–65.

    Article  MATH  MathSciNet  Google Scholar 

  • Hill, B., 1975. A simple general approach to inference about the tail of a distribution. Ann. Stat. 3(5), 1163–173.

    Article  MATH  Google Scholar 

  • Hille, E., Phillips, R.S., 1974. Functional Analysis and Semi-groups. American Mathematical Society Colloquium Publications, vol. XXXI. American Mathematical Society, Providence. Third printing of the revised edition of 1957.

    MATH  Google Scholar 

  • Jacob, N., 1996. Pseudo-differential Operators and Markov Processes. Mathematical Research, vol. 94. Akademie Verlag, Berlin.

    MATH  Google Scholar 

  • Katul, G.G., Porporato, A., Nathan, R., Siqueira, M., Soons, M.B., Poggi, D., Horn, H.S., Levin, S.A., 2005. Mechanistic analytical models for long-distance seed dispersal by wind. Am. Nat. 166, 368–81.

    Article  Google Scholar 

  • Klafter, J., Blumen, A., Shlesinger, M.F., 1987. Stochastic pathways to anomalous diffusion. Phys. Rev. A 35, 3081–085.

    Article  MathSciNet  Google Scholar 

  • Klein, E.K., Lavigne, C., Picault, H., Renard, M., Gouyon, P.H., 2006. Pollen dispersal of oilseed rape: estimation of the dispersal function and effects of field dimension. J. Appl. Ecol. 43(10), 141–51.

    Article  Google Scholar 

  • Kolmogorov, A., Petrovsky, N., Piscounov, S., 1937. Étude de l’équations de la diffusion avec croissance de la quantité de matière et son application a un problème biologique. Mosc. Univ. Bull. Math. 1, 1–5.

    Google Scholar 

  • Kot, M., Lewis, M.A., Van den Driessche, P., 1996. Dispersal data and the spread of invading organisms. Ecology 77, 2027–042.

    Article  Google Scholar 

  • Kozubowski, T., Meerschaert, M., Podgórski, K., 2006. Fractional Laplace motion. Adv. Appl. Probab. 38(2), 451–64.

    Article  MATH  Google Scholar 

  • Lockwood, D.R., Hastings, A., 2002. The effects of dispersal patterns on marine reserves: does the tail wag the dog? Theor. Popul. Biol. 61, 297–09.

    Article  Google Scholar 

  • Lynch, V.E., Carreras, B.A., del Castillo-Negrete, D., Ferreira-Mejias, K.M., Hicks, H.R., 2003. Numerical methods for the solution of partial differential equations of fractional order. J. Comput. Phys. 192, 406–21.

    Article  MATH  MathSciNet  Google Scholar 

  • Mantegna, R.N., Stanley, H.E., 1994. Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight. Phys. Rev. Lett. 73, 2946.

    Article  MATH  MathSciNet  Google Scholar 

  • Mantegna, R.N., Stanley, H.E., 1997. Econophysics: scaling and its breakdown in finance. J. Stat. Phys. 89, 469–79.

    Article  MATH  Google Scholar 

  • Mantegna, R.N., Stanley, H.E., 1998. Modeling of financial data: comparison of the truncated Lévy flight and the ARCH(1) and GARCH(1,1) processes. Physica A 254(1), 77–4.

    Article  Google Scholar 

  • Meerschaert, M.M., Scheffler, H.P., 2001. Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice. Wiley Interscience, New York.

    MATH  Google Scholar 

  • Meerschaert, M.M., Benson, D.A., Baeumer, B., 1999. Multidimensional advection and fractional dispersion. Phys. Rev. E 59, 5026–028.

    Article  Google Scholar 

  • Meerschaert, M.M., Benson, D.A., Baeumer, B., 2001. Operator Lévy motion and multiscaling anomalous diffusion. Phys. Rev. E 63, 1112–117.

    Article  Google Scholar 

  • Meerschaert, M.M., Benson, D.A., Scheffler, H., Baeumer, B., 2002a. Stochastic solution of space-time fractional diffusion equations. Phys. Rev. E 65, 1103–106.

    Article  MathSciNet  Google Scholar 

  • Meerschaert, M.M., Benson, D.A., Scheffler, H.P., Becker-Kern, P., 2002b. Governing equations and solutions of anomalous random walk limits. Phys. Rev. E 66, 102R–05R.

    Article  Google Scholar 

  • Metzler, R., Klafter, J., 2000. The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–7.

    Article  MATH  MathSciNet  Google Scholar 

  • Metzler, R., Klafter, J., 2004. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, R161–R208.

    Article  MATH  MathSciNet  Google Scholar 

  • Miller, K., Ross, B., 1993. An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York.

    MATH  Google Scholar 

  • Miyadera, I., Ôharu, S., 1970. Approximation of semi-groups of nonlinear operators. Tôhoku Math. J. 22, 24–7.

    Article  MATH  Google Scholar 

  • Murray, J.D., 2002. Mathematical biology. I, II, Interdisciplinary Applied Mathematics, 3rd edn., vols. 17, 18. Springer, New York.

    MATH  Google Scholar 

  • Neubert, M., Caswell, H., 2000. Demography and dispersal: calculation and sensitivity analysis of invasion speed for structured populations. Ecology 81(6), 1613–628.

    Article  Google Scholar 

  • Nolan, J.P., 1997. Numerical calculation of stable densities and distribution functions. Heavy tails and highly volatile phenomena. Comm. Stat. Stoch. Mod. 13(4), 759–74.

    Article  MATH  MathSciNet  Google Scholar 

  • Paradis, E., Baillie, S.R., Sutherland, W.J., 2002. Modeling large-scale dispersal distances. Ecol. Model. 151(2–3), 279–92.

    Google Scholar 

  • Pazy, A., 1983. Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, New York.

    MATH  Google Scholar 

  • Podlubny, I., 1999. Fractional Differential Equations. Academic, New York.

    MATH  Google Scholar 

  • Raberto, M., Scalas, E., Mainardi, F., 2002. Waiting-times and returns in high-frequency financial data: an empirical study. Physica A 314, 749–55.

    Article  MATH  Google Scholar 

  • Sabatelli, L., Keating, S., Dudley, J., Richmond, P., 2002. Waiting time distributions in financial markets. Eur. Phys. J. B 27, 273–75.

    MathSciNet  Google Scholar 

  • Saichev, A.I., Zaslavsky, G.M., 1997. Fractional kinetic equations: solutions and applications. Chaos 7(4), 753–64.

    Article  MATH  MathSciNet  Google Scholar 

  • Samko, S., Kilbas, A., Marichev, O., 1993. Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, London.

    MATH  Google Scholar 

  • Samorodnitsky, G., Taqqu, M.S., 1994. Stable Non-Gaussian Random Processes. Chapman & Hall/CRC, London/Boca Raton.

    MATH  Google Scholar 

  • Sato, K., 1999. Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Scalas, E., 2006. The application of continuous-time random walks in finance and economics. Physica A 362, 225–39.

    Article  Google Scholar 

  • Scalas, E., Gorenflo, R., Mainardi, F., 2000. Fractional calculus and continuous-time finance. Physica A 284, 376–84.

    Article  MathSciNet  Google Scholar 

  • Scalas, E., Gorenflo, R., Luckock, H., Mainardi, F., Mantelli, M., Raberto, M., 2005. On the intertrade waiting-time distribution. Financ. Lett. 3, 38–3.

    Google Scholar 

  • Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B., 2003. Multiscaling fractional advection-dispersion equations and their solutions. Water Resour. Res. 39, 1022–032.

    Article  Google Scholar 

  • Schumer, R., Benson, D.A., Meerschaert, M.M., Wheatcraft, S.W., 2001. Eulerian derivation of the fractional advection-dispersion equation. J. Contam. Hydrol. 48, 69–8.

    Article  Google Scholar 

  • Shaw, M.W., 1995. Simulation of population expansion and spatial pattern when individual dispersal distributions do not decline exponentially with distance. Proc. Roy. Soc. Lond. Ser. B 259, 243–48.

    Article  Google Scholar 

  • Shlesinger, M.F., 1995. Comment on stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight. Phys. Rev. Lett. 74, 4959–959.

    Article  Google Scholar 

  • Sokolov, I.M., Klafter, J., 2005. From diffusion to anomalous diffusion: a century after Einstein’s Brownian motion. Chaos 15(2), 026103-1–26103-7.

    Article  MathSciNet  Google Scholar 

  • Sokolov, I.M., Chechkin, A.V., Klafter, J., 2004. Fractional diffusion equation for a power-law-truncated Lévy process. Physica A 336(3–4), 245–51.

    Article  Google Scholar 

  • Tadjeran, C., Meerschaert, M.M., 2007. A second order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220, 813–23.

    Article  MATH  MathSciNet  Google Scholar 

  • Tadjeran, C., Meerschaert, M.M., Scheffler, H.P., 2006. A second order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–13.

    Article  MATH  MathSciNet  Google Scholar 

  • Taylor, S.J., 1986. The measure theory of random fractals. Math. Proc. Cambridge Philos. Soc. 100, 383–06.

    Article  MATH  MathSciNet  Google Scholar 

  • Viswanathan, G.M., Afanasyev, V., Buldyrev, S.V., Murphy, E.J., Prince, P.A., Stanley, H.E., 1996. Lévy flight search patterns of wandering albatrosses. Nature 381, 413–15.

    Article  Google Scholar 

  • Zaslavsky, G., 1994. Fractional kinetic equation for Hamiltonian chaos. Chaotic advection, tracer dynamics and turbulent dispersion. Physica D 76, 110–22.

    Article  MathSciNet  Google Scholar 

  • Zhang, Y., Benson, D.A., Meerschaert, M.M., Scheffler, H.P., 2006. On using random walks to solve the space-fractional advection-dispersion equations. J. Stat. Phys. 123, 89–10.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Baeumer.

Additional information

Partially supported by the Marsden fund administered by the Royal Society of New Zealand, NSF grants DMS-0139927, DMS-0417869 and DMS-0706440 and Postdoctoral grant No.  623-2005-5078 of the Swedish Research Council.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baeumer, B., Kovács, M. & Meerschaert, M.M. Fractional Reproduction-Dispersal Equations and Heavy Tail Dispersal Kernels. Bull. Math. Biol. 69, 2281–2297 (2007). https://doi.org/10.1007/s11538-007-9220-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-007-9220-2

Keywords

Navigation