Skip to main content
Log in

Spatial Patterns of Prisoner’s Dilemma Game in Metapopulations

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

An Erratum to this article was published on 30 June 2007

An Erratum to this article was published on 30 June 2007

Abstract

Because to defect is the evolutionary stable strategy in the prisoner’s dilemma game (PDG), understanding the mechanism generating and maintaining cooperation in PDG, i.e. the paradox of cooperation, has intrinsic significance for understanding social altruism behaviors. Spatial structure serves as the key to this dilemma. Here, we build the model of spatial PDG under a metapopulation framework: the sub-populations of cooperators and defectors obey the rules in spatial PDG as well as the colonization–extinction process of metapopulations. Using the mean-field approximation and the pair approximation, we obtain the differential equations for the dynamics of occupancy and spatial correlation. Cellular automaton is also built to simulate the spatiotemporal dynamics of the spatial PDG in metapopulations. Join-count statistics are used to measure the spatial correlation as well as the spatial association of the metapopulation. Simulation results show that the distribution is self-organized and that it converges to a static boundary due to the boycotting of cooperators to defectors. Metapopulations can survive even when the colonization rate is lower than the extinction rate due to the compensation of cooperation rewards for extinction debt. With a change of parameters in the model, a metapopulation can consist of pure cooperators, pure defectors, or cooperator–defector coexistence. The necessary condition of cooperation evolution is the local colonization of a metapopulation. The spatial correlation between the cooperators tends to be weaker with the increase in the temptation to defect and the habitat connectivity; yet the spatial correlation between defectors becomes stronger. The relationship between spatial structure and the colonization rate is complicated, especially for cooperators. The metapopulation may undergo a temporary period of prosperity just before the extinction, even while the colonization rate is declining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Axelrod, R., Hamilton, W.D., 1981. The evolution of cooperation. Science 211, 1390–1396.

    Article  MathSciNet  Google Scholar 

  • Brown, J.H., Mehlman, D.W., Stevens, G.C., 1995. Spatial variation in abundance. Ecology 76, 2028–2043.

    Article  Google Scholar 

  • Channell, R., Lomolino, M.V., 2000. Dynamic biogeography and conservation of endangered species. Nature 403, 84–86.

    Article  Google Scholar 

  • Cole, L.C., 1957. The measurement of partial interspecific association. Ecology 38, 226–233.

    Article  Google Scholar 

  • Dieckmann, U., Law, R., Metz, J.A.J., 2000. The Geometry of Ecological Interactions: Simplifying Spatial Complexity. Cambridge University Press, New York.

    Google Scholar 

  • Durrett, R., Levin, S., 1994. The importance of being discrete (and spatial). Theor. Popul. Biol. 46, 363–394.

    Article  MATH  Google Scholar 

  • Epstein, J.M., Axtell, R., 1996. Growing Artificial Societies. The Brookings Institution Press, Boston.

    Google Scholar 

  • Fisher, R.A., 1930. The Genetical Theory of Natural Selection. Clarendon, Oxford.

    MATH  Google Scholar 

  • Fortin, M.J., Dale, M.R.T., ver Hoef, J., 2002. Spatial analysis in ecology. In: El-Shaarawi, A.H., Piegorsch, W.W. (Eds.), Encyclopedia of Environmentrics. Wiley, New York, pp. 2051–2058.

    Google Scholar 

  • Greig-Smith, P., 1964. Quantitative Plant Ecology, 2nd edn. Butterworths, London.

    Google Scholar 

  • Hamilton, W.D., 1964. The genetical evolution of social behaviour. J. Theor. Biol. 7, 1–52.

    Article  Google Scholar 

  • Hanski, I., 1998. Metapopulation dynamics. Nature 396, 41–49.

    Article  Google Scholar 

  • Hanski, I., 1999. Metapopulation Ecology. Oxford University Press, Oxford.

    Google Scholar 

  • Hanski, I., Gaggiotti, O.E., 2004. Ecology, Genetics, and Evolution of Metapopulations. Elsevier, Amsterdam.

    Google Scholar 

  • Hanski, I., Zhang, D.Y., 1993. Migration, metapopulation dynamics and fugitive co-existence. J. Theor. Biol. 163, 491–504.

    Article  Google Scholar 

  • Harada, Y., Ezoe, H., Iwasa, Y., Matsuda, H., Sato, K., 1994. Population persistence and spatially limited social interaction. Theor. Popul. Biol. 48, 65–91.

    Article  Google Scholar 

  • Harada, Y., Iwasa, Y., 1994. Lattice population dynamics for plants with dispersing seeds and vegetative propagation. Res. Popul. Ecol. 36, 237–249.

    Article  Google Scholar 

  • Harmer, G.P., Abbott, D., 1999. Losing strategies can win by Parrondo's paradox. Nature 402, 864.

    Article  Google Scholar 

  • Harms, W., 1999. Biological altruism in hostile environments. Complexity 5(2), 23–28.

    Article  Google Scholar 

  • Hilborn, R.C., 2000. Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers. Oxford University Press, New York.

    MATH  Google Scholar 

  • Hoffmann, R., 2000. Twenty Years On: The Evolution of Cooperation Revisited. J. Artif. Soc. Soc. Simul. 3(2). http://www.soc.surrey.ac.uk/JASSS/3/2/forum/1.html

  • Huberman, B.A., Glance, N.S., 1993. Evolutionary games and computer simulations. Proc. Natl. Acad. Sci. USA 90, 7716–7718.

    Article  MATH  Google Scholar 

  • Hui, C., 2004. Spatial chaos of metapopulation incurred by Allee effect, overcrowding effect and predation effect. Acta Bot. Boreal.-Occident. Sin. 24, 370–383.

    Google Scholar 

  • Hui, C., Li, Z., 2003. Dynamical complexity and metapopulation persistence. Ecol. Model. 164, 201–209.

    Article  Google Scholar 

  • Hui, C., Li, Z., 2004. Distribution patterns of metapopulation determined by Allee effects. Popul. Ecol. 46, 55–63.

    Article  Google Scholar 

  • Hui, C., Li, Z., Yue, D.X., 2004. Metapopulation dynamics and distribution, and environmental heterogeneity induced by niche construction. Ecol. Model. 177, 107–118.

    Article  Google Scholar 

  • Hui, C., McGeoch, M.A., Warren, M., 2006. A spatially explicit approach to estimating species occupancy and spatial correlation. J. Anim. Ecol. 75, 140–147.

    Article  Google Scholar 

  • Hui, C., Yue, D., 2005. Niche construction and polymorphism maintenance in metapopulations. Ecol. Res. 20, 115–119.

    Article  Google Scholar 

  • Hutchinson, G.E., 1961. The paradox of the plankton. Am. Nat. 95, 137–147.

    Article  Google Scholar 

  • Huxel, G.R., Hastings, A., 1999. Habitat loss, fragmentation, and restoration. Restor. Ecol. 7, 309–315.

    Article  Google Scholar 

  • Iwasa, Y., Sato, K, Nakashima, S. 1991. Dynamic modeling of wave regeneration (Shimagare) in subalpine Abies forests. J. Theor. Biol. 152, 143–158.

    Article  Google Scholar 

  • Johnson, C.N., 1998. Species extinction and the relationships between distribution and abundance. Nature 394, 272–274.

    Article  Google Scholar 

  • Katori, M., Konno, N., 1991. Upper bounds for survival probability of the contact process. J. Stat. Phys. 63, 115–130.

    Article  MathSciNet  Google Scholar 

  • Kermer, J.E., Marquet, P.A., Johnson, A.R., 1998. Pattern formation in a patch occupancy metapopulation model: A cellular automata approach. J. Theor. Biol. 194, 79–90.

    Article  Google Scholar 

  • Levin, S.A., Grenfell, B., Hastings, A., Perelson, A.S., 1997. Mathematical and computational challenges in population biology and ecosystems sciences. Science 275, 334–343.

    Article  Google Scholar 

  • Levins, R., 1969. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Entom. Soc. Am. 15, 237–240.

    Google Scholar 

  • Lindgren, K., Nordahl, M.G., 1994. Cooperation and community structure in artificial ecosystems. Artif. Life 1, 15–37.

    Article  Google Scholar 

  • Matsuda, H., Ogita, A., Sasaki, A., Sato, K., 1992. Statistical mechanics of population: the lotka-volterra model. Prog. Theor. Phys. 88, 1035–1049.

    Article  Google Scholar 

  • McGeoch, M.A., Chown, S.L., 1998. Scaling up the value of bioindicators. Trends Ecol. Evol. 13, 46–47.

    Article  Google Scholar 

  • McGlade, J.M., 1999. Advanced Ecological Theory: Principles and Applications. Blackwell, Oxford.

    Google Scholar 

  • Nisbet, R.M., Gurney, W.S.C., 1982. Modelling Fluctuating Populations. Wiley, New York.

    MATH  Google Scholar 

  • Nowak, M.A., Bonhoeffer, S., May, R.M., 1994. Spatial games and the maintenance of cooperation. Proc. Natl. Acad. Sci. USA 91, 4877–4881.

    Article  MATH  Google Scholar 

  • Nowak, M.A., May, R.M., 1992. Evolutionary games and spatial chaos. Nature 359, 826–829.

    Article  Google Scholar 

  • Nowak, M.A., Sigmund, K., 1993. A strategy of win-stay, lose-shift that outperforms tit-for-tat in the prisoner's dilemma game. Nature 364, 56–58.

    Article  Google Scholar 

  • Nowak, M.A., Sigmund, K., 2004. Evolutionary dynamics of biological games. Science 303, 793–799.

    Article  Google Scholar 

  • Perry, J.N., Liebhold, A.M., Rosenberg, M.S., Dungan, J.L., Miriti, M., Jakomulska, A., Citron-Pousty, S., 2002. Illustrations and guidelines for selecting statistical methods for quantifying spatial pattern in ecological data. Ecography 25, 578–600.

    Article  Google Scholar 

  • Pielou, E.C., 1972. Measurement of structure in animal communities. In: Wiens, J.A. (Ed.), Ecosystem Structure and Function. Oregon State University Press, Corvallis, pp. 113–136.

    Google Scholar 

  • Rodriguez, A., Delibes, M., 2002. Internal structure and patterns of contration I the geographic range of the Iberian Lynx. Ecography 25, 314–328.

    Article  Google Scholar 

  • Sato, K., Iwasa, Y., 2000. Pair approximation for lattice-based ecological models. In: Dieckmann, U., Law, R., Metz, J.A.J. (Eds.), The Geometry of Ecological Interactions: Simplifying Spatial Complexity. Cambridge University Press, Cambridge, pp. 341–358.

    Google Scholar 

  • Sayama, H., 2004. Self-protection and diversity in self-replicating cellular automata. Artif. Life 10, 83–98.

    Article  Google Scholar 

  • Schonfisch, B., 1997. Anisotropy in cellular automata. Biosystems 41, 29–41.

    Article  Google Scholar 

  • Shigesada, N., Kawasaki, K., 1997. Biological Invasions: Theory and Practice. Oxford University Press, Oxford.

    Google Scholar 

  • Tainaka, K., 1993. Paradoxical effect in a three-candidate voter model. Phys. Lett. A 176, 303–306.

    Article  Google Scholar 

  • Tilman, D., 1994. Competition and biodiversity in spatially structured habitats. Ecology 75, 2–16.

    Article  Google Scholar 

  • Tilman, D., Kareiva, P., 1997. Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions. Princeton University Press, Princeton.

    Google Scholar 

  • Trivers, R., 1971. The evolution of reciprocal altruism. Q. Rev. Biol. 46, 35–57.

    Article  Google Scholar 

  • Upton, G.J.G., Fingleton, B., 1985. Spatial Data Analysis by Example, vol. 1: Point Pattern and Quantitative Data. Wiley, New York.

    Google Scholar 

  • Wilkinson, G.S., 1984. Reciprocal food sharing in the vampire bat. Nature 308, 181–184.

    Article  Google Scholar 

  • Williams, G.C., 1966. Adaptation and Natural Selection. Princeton University Press, Princeton.

    Google Scholar 

  • Wilson, D.S., Sober, E., 1994. Re-introducing group selection to human behavioral sciences. Behav. Brain Sci. 17, 585–654.

    Article  Google Scholar 

  • Wilson, R.J., Thomas, C.D., Fox, R., Roy, D.B., Kunin, W.E., 2004. Spatial patterns in species distributions reveal biodiversity change. Nature 432, 393–396.

    Article  Google Scholar 

  • Zhang, F., Hui, C., Han, X., Li, Z., 2005. Evolution of cooperation in patchy habitat under patch decay and isolation. Ecol. Res. 20, 461–469.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Huia.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11538-007-9209-x

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huia, C., McGeoch, M.A. Spatial Patterns of Prisoner’s Dilemma Game in Metapopulations. Bull. Math. Biol. 69, 659–676 (2007). https://doi.org/10.1007/s11538-006-9145-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9145-1

Keywords

Navigation