Skip to main content
Log in

A Nonlocal Continuum Model for Biological Aggregation

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

We construct a continuum model for biological aggregations in which individuals experience long-range social attraction and short-range dispersal. For the case of one spatial dimension, we study the steady states analytically and numerically. There exist strongly nonlinear states with compact support and steep edges that correspond to localized biological aggregations, or clumps. These steady-state clumps are reached through a dynamic coarsening process. In the limit of large population size, the clumps approach a constant density swarm with abrupt edges. We use energy arguments to understand the nonlinear selection of clump solutions, and to predict the internal density in the large population limit. The energy result holds in higher dimensions as well, and is demonstrated via numerical simulations in two dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldana, M., Huepe, C., 2003. Phase transitions in self-driven many-particle systems and related non-equilibrium models: A network approach. J. Stat. Phys. 112(1–2), 135–153.

    Article  MATH  Google Scholar 

  • Alt, W., 1985. Degenerate diffusion equations with drift functionals modeling aggregation. Nonlinear Anal. 9, 811–836.

    Article  MATH  MathSciNet  Google Scholar 

  • Bates, P., Fife, P., 1990. Spectral comparison principles for the Cahn–Hilliard and phase-field equations, and time scales for coarsening. Physica D 43(2–3), 335–348.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Ben-Jacob, E., Cohen, I., Levine, H., 2000. Cooperative self-organization of microorganisms. Adv. Phys. 49(4), 395–554.

    Article  CAS  ADS  Google Scholar 

  • Bertozzi, A., Grün, G., Witelski, T., 2001. Dewetting films: Bifurcations and concentrations. Nonlinearity 14(6), 1569–1592.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Breder, C., 1954. Equations descriptive of fish schools and other animal aggregations. Ecology 35(3), 361–370.

    Article  Google Scholar 

  • Bressloff, P., 2004. Euclidean shift-twist symmetry in population models of self-aligning objects. SIAM J. Appl. Math. 64(5), 1668–1690.

    Article  MATH  MathSciNet  Google Scholar 

  • Cahn, J., 1968. Spinodal decomposition. Trans. Metall. Soc. AIME 242, 166–180.

    CAS  Google Scholar 

  • Camazine, S., Deneubourg, J., Franks, N., Sneyd, J., Theraulaz, G., Bonabeau, E., 2001. Self-Organization in Biological Systems. Princeton Studies in Complexity. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Couzin, I., Krause, J., James, R., Ruxton, G., Franks, N., 2002. Collective memory and spatial sorting in animal groups. J. Theor. Biol. 218(1), 1–11.

    Article  PubMed  MathSciNet  Google Scholar 

  • Crawford, J., 1991. Introduction to bifurcation theory. Rev. Mod. Phys. 63(4), 991–1037.

    Article  MathSciNet  ADS  Google Scholar 

  • Cross, M., Hohenberg, P., 1993. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65(3), 851–1112.

    Article  CAS  ADS  Google Scholar 

  • dal Passo, R., Demottoni, P., 1984. Aggregative effects for a reaction–advection equation. J. Math. Biol. 20, 103–112.

    Article  MATH  MathSciNet  Google Scholar 

  • Edelstein-Keshet, L., Watmough, J., Grünbaum, D., 1998. Do travelling band solutions describe cohesive swarms? An investigation for migratory locusts. J. Math. Biol. 36(6), 515–549.

    Article  MATH  MathSciNet  Google Scholar 

  • Eilbeck, J., Furter, J., Grinfeld, M., 1989. On a stationary state characterization of transition from spinodal decomposition to nucleation behaviour in the Cahn–Hilliard model of phase separation. Phys. Lett. A 135(4–5), 272–275.

    Article  MathSciNet  ADS  Google Scholar 

  • Erdmann, U., Ebeling, W., 2003. Collective motion of Brownian particles with hydrodynamic interactions. Fluct. Noise Lett. 3(2), L145–L154.

    Article  Google Scholar 

  • Erdmann, U., Ebeling, W., Anishchenko, V., 2002. Excitation of rotational modes in two-dimensional systems of driven Brownian particles. Phys. Rev. E 65, 061106.1–061106.9.

    Article  MathSciNet  ADS  CAS  Google Scholar 

  • Flierl, G., Grünbaum, D., Levin, S., Olson, D., 1999. From individuals to aggregations: The interplay between behavior and physics. J. Theor. Biol. 196(4), 397–454.

    Article  PubMed  CAS  Google Scholar 

  • Glasner, K., Witelski, T., 2003. Coarsening dynamics of dewetting films. Phys. Rev. E 67, 016302.1–016302.12.

    Article  ADS  CAS  Google Scholar 

  • Grégoire, G., Chaté, H., 2004. Onset of collective and cohesive motion. Phys. Rev. Lett. 92(2), 025702.1–025702.4.

    Article  ADS  CAS  Google Scholar 

  • Grégoire, G., Chaté, H., Tu, Y., 2001. Active and passive particles: Modeling beads in a bacterial bath. Phys. Rev. E 64(1), 011902.1–011902.7.

    Article  ADS  CAS  Google Scholar 

  • Grégoire, G., Chaté, H., Tu, Y., 2003. Moving and staying together without a leader. Physica D 181(3–4), 157–170.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Grünbaum, D., Okubo, A., 1994. Modelling social animal aggregations. In: Levin, S. (Ed.), Frontiers in Mathematical Biology. Lecture Notes in Biomathematics, vol. 100. Springer-Verlag, Berlin, pp. 296–325.

    Google Scholar 

  • Holm, D., Putkaradze, V., 2005. Aggregation of finite size particles with variable mobility, Phys. Rev. Lett. 95(22), 226106.1–226106.4.

    Article  ADS  CAS  Google Scholar 

  • Hosono, Y., Mimura, M., 1989. Localized cluster solutions of nonlinear degenerate diffusion equations arising in population dynamics. SIAM J. Math. Anal. 20, 845–869.

    Article  MATH  MathSciNet  Google Scholar 

  • Ikeda, T., 1984. Stationary solutions of a spatially aggregating population model. Proc. Jpn. Acad. A 60, 46–48.

    MATH  Google Scholar 

  • Ikeda, T., 1985. Standing pulse-like solutions of a spatially aggregating population model. Jpn. J. Appl. Math. 2, 111–149.

    Article  MATH  Google Scholar 

  • Ikeda, T., Nagai, T., 1987. Stability of localized stationary solutions. Jpn. J. Appl. Math. 4, 73–97.

    MATH  MathSciNet  Google Scholar 

  • Kawasaki, K., 1978. Diffusion and the formation of spatial distributions. Math. Sci. 16(183), 47–52.

    Google Scholar 

  • Levine, H., Rappel, W., Cohen, I., 2001. Self-organization in systems of self-propelled particles. Phys. Rev. E 63, 017101.1–017101.4.

    Article  ADS  CAS  Google Scholar 

  • Mimura, M., Yamaguti, M., 1982. Pattern formation in interacting and diffusing systems in population biology. Adv. Biophys. 15, 19–65.

    Article  PubMed  CAS  Google Scholar 

  • Mogilner, A., Edelstein-Keshet, L., 1999. A non-local model for a swarm. J. Math. Biol. 38(6), 534–570.

    Article  MATH  MathSciNet  Google Scholar 

  • Mogilner, A., Edelstein-Keshet, L., Bent, L., Spiros, A., 2003. Mutual interactions, potentials, and individual distance in a social aggregation. J. Math. Biol. 47(4), 353–389.

    Article  PubMed  CAS  MATH  MathSciNet  Google Scholar 

  • Nagai, T., Mimura, M., 1983. Asymptotic behavior for a nonlinear degenerate diffusion equation in population dynamics. SIAM J. Appl. Math. 43, 449–464.

    Article  MATH  MathSciNet  Google Scholar 

  • Okubo, A., 1980. Diffusion and Ecological Problems. Springer, New York.

    MATH  Google Scholar 

  • Okubo, A., Grünbaum, D., Edelstein-Keshet, L., 2001. The dynamics of animal grouping. In: Okubo, A., Levin, S. (Eds.), Diffusion and Ecological Problems, 2nd edition. Interdisciplinary Applied Mathematics: Mathematical Biology, vol. 14. Springer Verlag, New York, Chapter 7, pp. 197–237.

    Google Scholar 

  • Okubo, A., Levin, S. (Eds.), 2001. Diffusion and Ecological Problems, 2nd edition. Interdisciplinary Applied Mathematics: Mathematical Biology, vol. 14. Springer, New York.

    MATH  Google Scholar 

  • Okubo, A., Sakamoto, W., Inagaki, T., Kuroki, T., 1977. Studies on the schooling behavior of fish. Bull. Jpn. Soc. Sci. Fish 9, 1369–1377.

    Google Scholar 

  • Oron, A., Bankoff, S., 2001. Dynamics of a condensing liquid film under conjoining/disjoining pressures. Phys. Fluids 13(5), 1107–1117.

    Article  CAS  ADS  Google Scholar 

  • Parrish, J., Edelstein-Keshet, L., 1999. Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284, 99–101.

    Article  PubMed  CAS  ADS  Google Scholar 

  • Parrish, J., Hamner, W. (Eds.), 1997. Animal Groups in Three Dimensions. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Parrish, J., Viscido, S., Grünbaum, D., 2003. Self-organized fish schools: An examination of emergent properties. Bio. Bull. 202(3), 296–305.

    Google Scholar 

  • Sakai, S., 1973. A model for group structure and its behavior. Biophysics 13, 82–90.

    Google Scholar 

  • Satsuma, J., Mimura, M., 1985. Exact treatments of nonlinear diffusion equations with singular integral terms. J Phys. Soc. Jpn. 54, 894–900.

    Article  MathSciNet  ADS  Google Scholar 

  • Schweitzer, F., Ebeling, W., Tilch, B., 2001. Statistical mechanics of canonical-dissipative systems and applications to swarm dynamics. Phys. Rev. E 64, 021110.1–0211101.2.

    Article  ADS  CAS  Google Scholar 

  • Simha, R., Ramaswamy, S., 2002a. Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles. Phys. Rev. Lett. 89(5), 028181.1–058101.4.

    Google Scholar 

  • Simha, R., Ramaswamy, S., 2002b. Statistical hydrodynamics of ordered suspensions of self-propelled particles: Waves, giant number fluctuations and instabilities. Physica A 306, 262–269.

    Article  ADS  MATH  Google Scholar 

  • Suzuki, R., Sakai, S., 1973. Movement of a group of animals. Biophysics 13, 281–282.

    Article  Google Scholar 

  • Toner, J., Tu, Y., 1998. Flocks, herds, and schools: A quantitative theory of flocking. Phys. Rev. E 58(4), 4828–4858.

    Article  CAS  MathSciNet  ADS  Google Scholar 

  • Topaz, C., Bertozzi, A., 2004. Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J. Appl. Math. 65(1), 152–174.

    Article  MATH  MathSciNet  Google Scholar 

  • Tyutyunov, Y., Senina, I., Arditi, R., 2004. Clustering due to acceleration in the response to population gradient: A simple self-organizational model. Am. Nat. 164(6), 722–735.

    Article  Google Scholar 

  • Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O., 1995. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75(6), 1226–1229.

    Article  PubMed  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad M. Topaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Topaz, C.M., Bertozzi, A.L. & Lewis, M.A. A Nonlocal Continuum Model for Biological Aggregation. Bull. Math. Biol. 68, 1601–1623 (2006). https://doi.org/10.1007/s11538-006-9088-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9088-6

Keywords

Navigation