Skip to main content
Log in

The Development of Fungal Networks in Complex Environments

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Fungi are of fundamental importance in terrestrial ecosystems playing important roles in decomposition, nutrient cycling, plant symbiosis and pathogenesis, and have significant potential in several areas of environmental biotechnology such as biocontrol and bioremediation. In all of these contexts, the fungi are growing in environments exhibiting spatio-temporal nutritional and structural heterogeneities. In this work, a discrete mathematical model is derived that allows detailed understanding of how events at the hyphal level are influenced by the nature of various environmental heterogeneities. Mycelial growth and function is simulated in a range of environments including homogeneous conditions, nutritionally-heterogeneous conditions and structurally-heterogeneous environments, the latter emulating porous media such as soils. Our results provide further understanding of the crucial processes involved in fungal growth, nutrient translocation and concomitant functional consequences, e.g. acidification, and have implications for the biotechnological application of fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, M. 1964. Biochemical ecology of soil microorganisms. Ann. Rev. Microbiol. 18, 217–252.

    Article  Google Scholar 

  • Anderson, A.R.A. 2003. A hybrid discrete-continuum technique for individual-based migration models. In Alt, W., Chaplain, M., Griebel, M., Lenz, J. (Eds.), Polymer and Cell Dynamics—Multiscale Modelling and Numerical Simulations. Birkhauser, Switzerland, pp. 251–259.

  • Anderson, A.R.A., Chaplain, M.A.J., 1998. Continuous and discrete mathematical models of tumour-induced angiogenesis. Bull. Math. Biol. 60, 857–899.

    Article  MATH  Google Scholar 

  • Anderson, A.R.A., Sleeman, B.D., Young, I.M., Griffiths, B.S., 1997. Nematode movement along a chemical gradient in a structurally heterogeneous environment. 2. Theory. Fundam. Appl. Nematol. 20, 165–172.

    Google Scholar 

  • Bailey, D.J., Otten, W., Gilligan, C.A., 2000. Saprotrophic invasion by the soil-borne fungal plant pathogen Rhizoctonia solani and percolation thresholds. New Phytol. 146, 535-544.

    Article  Google Scholar 

  • Barnsley, M., 1988. Fractals Everywhere. Academic Press, London.

    MATH  Google Scholar 

  • Bell, A.D., 1986. The simulation of branching patterns in modular organisms. Phil. Trans. R. Soc. London Ser. B. Biol. Sci. 313, 143–160.

    Article  Google Scholar 

  • Boddy, L., 1999. Saprotrophic cord-forming fungi: Meeting the challenge of heterogeneous environments. Mycologia 91, 13–32.

    Article  Google Scholar 

  • Boswell, G.P., Britton, N.F., Franks, N.R., 1998. Habitat fragmentation, percolation theory and the conservation of a keystone species. Proc. R. Soc. Lond. B 265, 1921–1925.

    Google Scholar 

  • Boswell, G.P., Jacobs, H., Davidson, F.A., Gadd, G.M., Ritz, K., 2002. Functional consequences of nutrient translocation in mycelial fungi. J. Theor. Biol. 217, 459–477.

    Article  MathSciNet  Google Scholar 

  • Boswell, G.P., Jacobs, H., Davidson, F.A., Gadd, G.M., Ritz, K., 2003a. Growth and function of fungal mycelia in heterogeneous environments. Bull. Math. Biol. 65, 447–477.

    Article  Google Scholar 

  • Boswell, G.P., Jacobs, H., Davidson, F.A., Gadd, G.M., Ritz, K., 2003b. A positive numerical scheme for a mixed-type partial differential equation model for fungal growth. Appl. Math. Comput. 138, 321–340.

    Article  MATH  MathSciNet  Google Scholar 

  • Carroll, G.C., Wicklow, D.T., (Eds.) 1992. The Fungal Community: its Organisation and Role in the Ecosystem. Marcel-Decker, New York.

  • Cartwright, D.K., Spurr, H.W., 1998. Biological control of Phytophthora parasitica var. nicotianae on tobacco seedling with non-pathogenic binucleate Rhizoctonia fungi. Soil Biol. Biochem. 30, 1879–1884.

    Article  Google Scholar 

  • Caswell, H., Etter, R.J., 1993. Ecological interactions in patchy environments: from patch-occupancy models to cellular automata. In: Levin, S.A., Powell, T.M., Steele, J. (Eds.), Patch Dynamics, Volume 96 of Lecture Notes in Biomathematics. Springer, New York, pp. 176–183.

  • Chen, C., Stotzky, G., 2002. Interactions between microorganisms and soil particles: An overview. In: Huang, P.M., Bollag, J.-M., Senesi, N. (Eds.), Interactions Between Soil Particles and Microorganisms: Impact on the Terrestrial Ecology. Wiley, New York, pp. 3–40.

  • Cohen, D., 1967. Computer simulation of biological pattern generation processes. Nature 216, 246–248.

    Article  Google Scholar 

  • Davidson, F.A., 1998. Modelling the qualitative response of fungal mycelia to heterogeneous environments. J. Theor. Biol. 195, 281–292.

    Article  Google Scholar 

  • Dix, N.J., Webster, J., 1995. Fungal Ecology. Chapman and Hall, London.

  • Durrett, R., Levin, S., 1994. Stochastic spatial models: A user's guide to ecological applications. Phil. Trans. R. Soc. Lond. B 259, 329–350.

    Article  Google Scholar 

  • Edelstein, L., 1982. The propagation of fungal colonies: A model for tissue growth. J. Theor. Biol. 98, 679–701.

    Article  MathSciNet  Google Scholar 

  • Edelstein, L., Segel, L.A., 1983. Growth and metabolism in mycelial fungi. J. Theor. Biol. 104, 187–210.

    Article  Google Scholar 

  • Ermentrout, G.B., Edelstein-Keshet, L., 1993. Cellular automata approaches to biological modelling. J. Theor. Biol. 160, 97–133.

    Article  Google Scholar 

  • Fisher-Parton, S., Parton, R.M., Hickey, P.C., Dijksterhuis, J., Atkinson, H.A., Read, N.D., 2000. Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. J. Microsc. 198, 246–259.

    Article  Google Scholar 

  • Fomina, M., Ritz, K., Gadd, G.M., 2000. Negative fungal chemotropism to toxic metals. FEMS Microbiol. Lett. 193, 207–211.

    Article  Google Scholar 

  • Fomina, M., Ritz, K., Gadd, G.M., 2003. Nutritional influence on the ability of fungal mycelia to penetrate toxic metal-containing domains. Mycol. Res. 107, 861–871.

    Article  Google Scholar 

  • Gadd, G.M., 1988. Carbon nutrition and metabolism. In: Berry, D.R. (Ed.), Physiology of Industrial Fungi. Blackwell Scientific, Oxford, UK, pp. 21–57.

  • Gadd, G.M., 1999. Fungal production of citric and oxalic acid: Importance in metal speciation, physiology and biogeochemical processes. Adv. Microb. Physiol. 41, 47–92.

    Article  Google Scholar 

  • Gadd, G.M. (Ed.), 2001. Fungi in Bioremediation. Cambridge University Press, Cambridge, p. 481, ISBN: 0-521-78119-1.

  • Gadd, G.M., Ramsay, L., Crawford, J.W., Ritz, K., 2001. Nutritional influence on fungal colony growth and biomass distribution in response to toxic metals. FEMS Microbiol. Lett. 204, 311–316.

    Article  Google Scholar 

  • Gadd, G.M., Sayer, J., 2000. Fungal transformations of metals and metalloids. In: Lovley, D.R. (Ed.), Environmental Microbe-Metal Interactions. American Society for Microbiology, Washington, pp. 237–256.

  • Gooday, G.W., 1975. Chemotaxis and chemotrophism in fungi and algae. In: Carlile, M.J. (Ed.), Primitive Sensory and Communication Systems, Academic Press, London, pp. 155-204.

  • Gooday, G.W., 1995. The dynamics of hyphal growth. Mycol. Res. 99, 385–394.

    Google Scholar 

  • Gow, N., Gadd, G.M., (Eds.) 1995. The Growing Fungus. Chapman and Hall, London.

  • Halley, J.M., Comins, H.N., Lawton, J.H., Hassell, M.P., 1994. Competition, succession and pattern in fungal communities—towards a cellular automata model. Oikos 70, 435–442.

    Article  Google Scholar 

  • Harris, K., Crabb, D., Young, I.M., Weaver, H., Gilligan, C.A., Otten, W., Ritz, K., 2002. In situ visualisation of fungi in soil thin sections: Problems with crystallisation of the fluorochrome FB 28 (Calcofluor M2R) and improved staining by SCRI Renaissance 2200. Mycol. Res. 106, 293–297.

  • Harris, K., Young, I.M., Gilligan, C.A., Otten, W., Ritz, K., 2003. Effect of bulk density on the spatial organisation of the fungus Rhizoctonia solani in soil. FEMS Microbiol. Ecol. 44, 45–56.

    Article  Google Scholar 

  • Hillen, T., Othmer, H.G., 2000. The diffusion limit of transport equations derived from velocity-jump processes. SIAM J. Appl. Math. 61, 751–775.

    Article  MATH  MathSciNet  Google Scholar 

  • Hutchinson, S.A., Sharma, P., Clark, K.R., MacDonald, I., 1980. Control of hyphal orientation in colonies of Mucor hiemalis. Trans. Br. Mycol. Soc. 75, 177–191.

    Article  Google Scholar 

  • Jacobs, H., Boswell, G.P., Harper, F.A., Ritz, K., Davidson, F.A., Gadd, G.M., 2002. Solubilization of metal phosphates by Rhizoctonia solani. Mycol. Res. 106, 1468–1479.

    Article  Google Scholar 

  • Jacobs, H., Boswell, G.P., Ritz, K., Davidson, F.A., Gadd, G.M., 2002. Solubilization of calcium phosphate as a consequence of carbon translocation by Rhizoctonia solani. FEMS Microbiol. Ecol. 40, 65–71.

    Article  Google Scholar 

  • Jacobs, H., Boswell, G.P., Scrimgeour, C.M., Davidson, F.A., Gadd, G.M., Ritz, K., 2004. Translocation of glucose-derived carbon by Rhizoctonia solani in nutritionally heterogeneous environments. Mycol. Res. 108, 453–461.

    Article  Google Scholar 

  • Jennings, D.H., Thornton, J.D., Galpin, M.F.J., Coggins, C.R., 1974. Translocation in fungi. Symp. Soc. Exp. Biol. 28, 139–156.

    Google Scholar 

  • Kotov, V., Reshetnikov, S.V., 1990. A stochastic model for early mycelial growth. Mycol. Res. 94, 577–586.

    Google Scholar 

  • LeVeque, R.J., 1992. Numerical Methods for Conservation Laws. Lectures in Mathematics, ETH Zürich. Basel: Birkhäuser.

  • :1968a Lindenmayer, A., 1968a. Mathematical models for cellular interactions in development I. Filaments with one-sided inputs. J. Theor. Biol. 18, 280–299.

    Article  Google Scholar 

  • :1968b Lindenmayer, A., 1968b. Mathematical models for cellular interactions in development II. Simple and branching filaments with two-sided inputs. J. Theor. Biol. 18, 300–315.

    Article  Google Scholar 

  • Littlefield, L.J., Wilcoxson, R.D., Sudia, T.W., 1965. Translocation of phosphorus-32 in Rhizoctonia solani. Phytopathology 55, 536–542.

    Google Scholar 

  • Lopez-Franco, R., Bartnicki-Garcia, S., Bracker, C.E., 1994. Pulsed growth of fungal hyphal tips. Proc. Natl. Acad. Sci. U.S.A. 91, 12228–12232.

    Google Scholar 

  • Meěkauskas, A., McNulty, L.J., Moore, D., 2004a. Concerted regulation of all hyphal tips generates fungal fruit body structures: Experiments with computer visualizations produced by a new mathematical model of hyphal growth. Mycol. Res. 108, 341–353.

    Article  Google Scholar 

  • Meěkauskas, A., Fricher, M.D., Moore, D., 2004b. Simulating colonial growth of fungi with the neighbour-sensing model of hyphal growth. Mycol. Res. 108, 1241–1256.

    Article  Google Scholar 

  • Morley, G.F., Sayer, J.A., Wilkinson, S.C., Gharieb, M.M., Gadd, G.M., 1996. Fungal sequestration, solubilization and transformation of toxic metals. In: Frankland, J.C., Magan, N., Gadd, G.M. (Eds.), Fungi and Environmental Change, Cambridge University Press, Cambridge, pp. 235–256.

  • Ogoshi, A., 1987. Ecology and pathology of anastomosis and intraspecific groups of Rhizoctonia solani Kühn. Ann. Rev. Phytopathol. 25, 125–143.

    Google Scholar 

  • Olsson, S., 1994. Uptake of glucose and phosphorus by growing colonies of Fusarium oxysporum as qualified by image analysis. Exp. Mycol. 18, 33–47.

    Article  Google Scholar 

  • Olsson, S., 1995. Mycelial density profiles of fungi on heterogeneous media and their interpretation in terms of nutrient reallocation patterns. Mycol. Res. 99, 143–153.

    Google Scholar 

  • Olsson, S., 1999. Nutrient translocation and electric signalling in mycelia. In: Gow, N.A.R., Robson, G.D., Gadd, G.M. (Eds.), The Fungal Colony, Cambridge University Press, Cambridge.

  • Olsson, S., Gray, S.N., 1998. Patterns and dynamics of 32P-phosphate and labelled 2-aminoisobutyric acid (14C-AIB) translocation in intact basidiomycete mycelia. FEMS Microbiol. Ecol. 26, 109–120.

    Article  Google Scholar 

  • Othmer, H.G., Stevens, A., 1997. Aggregation, blowup, and collapse: The ABC's of taxis in reinforced random walks. SIAM J. Appl. Math. 57, 1044–1081.

    Article  MATH  MathSciNet  Google Scholar 

  • Otten, W., Hall, D., Harris, K., Ritz, K., Young, I.M., Gilligan, C.A., 2001. Soil physics, fungal epidemiology and the spread of Rhizoctonia solani. New Phytol. 151, 459–468.

    Article  Google Scholar 

  • Paul, E.A., Clark, F.E., 1989. Soil Microbiology and Biochemistry, Academic Press, San Diego.

    Google Scholar 

  • Persson, C., Olsson, S., Jansson, H.-B., 2000. Growth of Arthrobotrys superba from a birch wood food base into soil determined by radioactive tracing. FEMS Microbiol. Ecol. 31, 47–51.

    Article  Google Scholar 

  • Plank, M.J., Sleeman, B. 2004. Lattice and non-lattice models for tumour angiogenesis. Bull. Math. Biol. 66, 1785–1819.

    Article  MathSciNet  Google Scholar 

  • Rayner, A.D.M., Franks, N.R., 1987. Evolutionary and ecological parallels between ants and fungi. Trends Ecol. Evol. 2, 127–132.

    Article  Google Scholar 

  • Rayner, A.D.M., Watkins, Z.R., Beeching, J.R., 1999. Self-integration—an emerging concept from the fungal mycelium. In: Gow, N.A.R., Robson, G.D., Gadd, G.M. (Eds.), The Fungal Colony, Cambridge University Press, Cambridge, pp. 1–24.

  • Regalado, C.M., Crawford, J.W., Ritz, K., Sleeman, B.D., 1996. The origins of spatial heterogeneity in vegetative mycelia: A reaction-diffusion model. Mycol. Res. 100, 1473-1480.

    Article  Google Scholar 

  • Ritz, K., 1995. Growth responses of some soil fungi to spatially heterogeneous nutrients. FEMS Microbiol. Ecol. 16, 269–280.

    Article  Google Scholar 

  • Ritz, K., Crawford, J.W., 1990. Quantification of the fractal nature of colonies of Trichoderma viride. Mycol. Res. 94, 1138–1141.

    Google Scholar 

  • Ritz, K., Crawford, J.W., 1999. Colony development in nutritionally heterogeneous environments. In: Gow, N.A.R., Robson, G.D., Gadd, G.M. (Eds.), The Fungal Colony, Cambridge University Press, Cambridge, pp. 49–74.

  • Sampson, K., Lew, R.R., Heath, I.B., 2003. Time series analysis demonstrates the absence of pulsatile hyphal growth. Microbiology 149, 3111–3119.

    Article  Google Scholar 

  • Sayer, J.A., Gadd, G.M., 1997. Solubilization and transformation of insoluble metal compounds to insoluble metal oxalates by Aspergillus niger. Mycol. Res. 101, 653–661.

    Article  Google Scholar 

  • Sayer, J.A., Raggett, S.L., Gadd, G.M., 1995. Solubilization of insoluble metal compounds by soil fungi: Development of a screening method for solubilizing ability and metal tolerance. Mycol. Res. 99, 987–993.

    Google Scholar 

  • Schack-Kirchner, H., Wilpert, K.V., Hildebrand, E.E., 2000. The spatial distribution of soil hyphae in structured spruce-forest soils. Plant Soil 224, 195–205.

    Article  Google Scholar 

  • Soddell, F., Seviour, R., Soddell, J., 1995. Using Lindenmayer systems to investigate how filamentous fungi may produce round colonies. Complexity International 2. Available online: http://www.csu.edu.au/ci/vol2/f_soddel/f_soddel.html.

  • Stauffer, D., 1985. Introduction to percolation theory, Taylor & Francis Ltd, London.

    MATH  Google Scholar 

  • Sun, S., Wheeler, M.F., Obeyesekere, M., Patrick, C.W., 2005. A deterministic model of growth factor-induced angiogenesis. Bull. Math. Biol. 67, 313–337.

    Article  MathSciNet  Google Scholar 

  • Thornton, C.R., Gilligan, C.A., 1999. Quantification of the effect of the hyperparasite Trichoderma harzianum on the saprotrophic growth dynamics of Rhizoctonia solani in compost using a monoclonal antibody-based ELISA. Mycol. Res. 103, 443–448.

    Article  Google Scholar 

  • Tisdall, J.M., 1994. Possible role of soil-microorganisms in aggregation in soils. Plant Soil 159, 115–121.

    Google Scholar 

  • Webster, J., 1980. Introduction to Fungi, (2nd ed.). Cambridge University Press, Cambridge.

    Google Scholar 

  • Whipps, J.M., 2001. Microbial interactions and biocontrol in the rhizosphere. J. Exp. Bot. 52, 487–511.

    Google Scholar 

  • Zheng, X., Wise, S.M., Cristini, V., 2005. Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method. Bull. Math. Biol. 67, 211–259.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme P. Boswell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boswell, G.P., Jacobs, H., Ritz, K. et al. The Development of Fungal Networks in Complex Environments. Bull. Math. Biol. 69, 605–634 (2007). https://doi.org/10.1007/s11538-005-9056-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-005-9056-6

Keywords

Navigation