Skip to main content

Advertisement

Log in

Evolution of Dispersal in a Structured Metapopulation Model in Discrete Time

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this article, a structured metapopulation model in discrete time with catastrophes and density-dependent local growth is introduced. The fitness of a rare mutant in an environment set by the resident is defined, and an efficient method to calculate fitness is presented. With this fitness measure evolutionary analysis of this model becomes feasible. This article concentrates on the evolution of dispersal. The effect of catastrophes, dispersal cost, and local dynamics on the evolution of dispersal is investigated. It is proved that without catastrophes, if all population–dynamical attractors are fixed points, there will be selection for no dispersal. A new mechanism for evolutionary branching is also found: Even though local population sizes approach fixed points, catastrophes can cause enough temporal variability, so that evolutionary branching becomes possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Christiansen, F.B., 1991. On conditions for evolutionary stability for a continuously varying character. Am. Nat. 138, 37–50.

    Article  Google Scholar 

  • Clobert, J., Danchin, E., Dhondt, A.A., Nichols, J.D. (Eds.), 2001. Dispersal. Oxford University Press.

  • Comins, H.N., Hamilton, W.D., May, R.M., 1980. Evolutionarily stable dispersal strategies. J. Theor. Biol. 82, 205–230.

    Article  PubMed  MathSciNet  Google Scholar 

  • Dieckmann, U., Law, R., 1996. The Dynamical Theory of Coevolution: A Derivation from Stochastic Ecological Processes. J. Math. Biol. 34, 579–612.

    Article  PubMed  MathSciNet  MATH  Google Scholar 

  • Doebeli, M., 1995. Dispersal and dynamics. Theor. Popul. Biol. 47, 82–106.

    Article  MATH  Google Scholar 

  • Doebeli, M., Ruxton, G.D., 1997. Evolution of dispersal rates in metapopulation models: Branching and cyclic dynamics in phenotype space. Evolution 51, 1730–1741.

    Article  Google Scholar 

  • Eshel, I., 1983. Evolutionary and continuous stability. J. Theor. Biol. 103, 99–111.

    Article  MathSciNet  Google Scholar 

  • Gandon, S., 1999. Kin competition, the cost of inbreeding and the evolution of dispersal. J. Theor. Biol. 200, 245–364.

    Article  PubMed  Google Scholar 

  • Gandon, S., Michalakis, Y., 1999. Evolutionarily stable dispersal rate in a metapopulation with extinctions and kin competition. J. Theor. Biol. 199, 275–290.

    Article  PubMed  Google Scholar 

  • Geritz, S.A.H., Kisdi,É. Meszéna, G., Metz, J.A. J., 1998. Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12, 35–57.

    Article  Google Scholar 

  • Geritz, S.A.H., Metz, J.A.J., É. Kisdi, Meszéna, G., 1997. Dynamics of adaptation and evolutionary branching. Phys. Rev. Lett. 78, 2024–2027.

    Article  Google Scholar 

  • Geritz, S.A.H., van der Meijden, E., Metz, J.A.J., 1999. Evolutionary dynamics of seed size and seedling competitive ability. Theor. Popul. Biol. 55, 324–343.

    Article  PubMed  MATH  Google Scholar 

  • Gyllenberg, M., Metz, J.A.J., 2001. On fitness in structured metapopulations. J. Math. Biol. 43, 545–560.

    Article  PubMed  MathSciNet  MATH  Google Scholar 

  • Gyllenberg, M., Parvinen, K., 2001. Necessary and sufficient conditions for evolutionary suicide. Bull. Math. Biol. 63, 981–993.

    Article  PubMed  Google Scholar 

  • Gyllenberg, M., Parvinen, K., Dieckmann, U., 2002. Evolutionary suicide and evolution of dispersal in structured metapopulations. J. Math. Biol. 45, 79–105.

    Article  PubMed  MathSciNet  MATH  Google Scholar 

  • Hastings, A., 1983. Can spatial variation alone lead to selection for dispersal. Theor. Pop. biol. 24, 244–251.

    Article  MathSciNet  MATH  Google Scholar 

  • Heino, M., Hanski, I., 2001. Evolution of migration rate in a spatially realistic metapopulation model. Am. Nat. 157, 495–511.

    Article  Google Scholar 

  • Holt, R.D., McPeek, M., 1996. Chaotic population dynamics favors the evolution of dispersal. Am. Nat. 148, 709–718.

    Article  Google Scholar 

  • Johst, K., Doebeli, M., Brandl, R., 1999. Evolution of complex dynamics in spatially structured populations. Proc. R. Soc. London B 266, 1147–1154.

    Article  Google Scholar 

  • Kisdi, É., 2002. Dispersal: Risk spreading versus local adaptation. Am. Nat. 159, 579–596.

    Article  Google Scholar 

  • Levins, R., 1969. Some demographic and genetic consequenses of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am. 15, 237–240.

    Google Scholar 

  • Levins, R., 1970. Extinction. In: Gerstenhaber, M. (Ed.), Some Mathematical Problems in Biology. American Mathematical Society, Providence, RI, pp. 77–107.

  • Mathias, A., É. Kisdi, Olivieri, I., 2001. Divergent evolution of dispersal in a heterogeneous landscape. Evolution 55, 246–259.

    PubMed  Google Scholar 

  • Matsuda, H., 1985. Evolutionarily stable strategies for predator switching. J. Theor. Biol 115, 351–366.

    Article  MathSciNet  Google Scholar 

  • Maynard Smith, J., 1976. Evolution and the Theory of Games. Am. Sci. 64, 41–45.

    PubMed  Google Scholar 

  • Maynard Smith, J., Price, G.R., 1973. The logic of animal conflict. Nature 246, 15–18.

    Article  Google Scholar 

  • McPeek, M., Holt, R.D., 1992. The evolution of dispersal in spatially and temporally varying environments. Am. Nat. 140, 1010–1027.

    Article  Google Scholar 

  • Meszéna, G., Czibula, I., Geritz, S.A.H., 1997. Adaptive dynamics in a 2-patch environment: a toy model for allopatric and parapatric speciation. J. Biol. Syst. 5, 265–284.

    Article  MATH  Google Scholar 

  • Meszéna, G., Czibula, I., Geritz, S.A.H., 1997. Adaptive dynamics in a 2-patch environment: a toy model for allopatric and parapatric speciation. J. Biol. Syst. 5, 265–284.

    Google Scholar 

  • Metz, J.A.J., Gyllenberg, M., 2001. How should we define fitness in structured metapopulation models? Including an application to the calculation of ES dispersal strategies. Proc. R. Soc. London B 268, 499–508.

    Article  Google Scholar 

  • Metz, J.A.J., Nisbet, R.M., Geritz, S.A.H., 1992. How should we define “fitness” for general ecological scenarios? Trends Ecol. Evol. 7, 198–202.

    Article  Google Scholar 

  • Metz, J.A.J., Nisbet, R.M., Geritz, S.A.H., 1992. How should we define “fitness” for general ecological scenarios? Trends Ecol. Evol. 7, 198–202.

    Google Scholar 

  • Parvinen, K., 1999. Evolution of migration in a metapopulation. Bull. Math. Biol. 61, 531–550.

    Article  Google Scholar 

  • Parvinen, K., 2001. Adaptive Metapopulation Dynamics . Ph.D. thesis, University of Turku, Finland.

  • Parvinen, K., 2001. Adaptive Metapopulation Dynamics . Ph.D. thesis, University of Turku, Finland.

    Article  PubMed  MathSciNet  MATH  Google Scholar 

  • Parvinen, K., Dieckmann, U., Gyllenberg, M., Metz, J.A.J., 2003. Evolution of dispersal in metapopulations with local density dependence and demographic stochasticity. J. Evol. Biol 16, 143–153.

    Article  PubMed  Google Scholar 

  • Parvinen, K., 2005. Evolutionary suicide. Acta Biotheoretica 53, 241–264.

    Article  PubMed  Google Scholar 

  • Parvinen, K., 2005. Evolutionary suicide. Acta Biotheoretica 53, 241–264.

    Article  PubMed  Google Scholar 

  • Taylor, P.D., 1989. Evolutionary stability in one-parameter models under weak selection. Theor. Popul. Biol. 36, 125–143.

    Article  MATH  Google Scholar 

  • Van Tienderen , P.H., De Jong, G., 1986. Sex ratio under the haystack model: Polymorphism may occur. J. Theor. Biol. 122, 69–81.

    Article  MathSciNet  Google Scholar 

  • Van Tienderen , P.H., De Jong, G., 1986. Sex ratio under the haystack model: Polymorphism may occur. J. Theor. Biol. 122, 69–81.

    Article  Google Scholar 

  • Van Valen, L., 1971. Group selection and the evolution of dispersal. Evolution 25, 591–598.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalle Parvinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parvinen, K. Evolution of Dispersal in a Structured Metapopulation Model in Discrete Time. Bull. Math. Biol. 68, 655–678 (2006). https://doi.org/10.1007/s11538-005-9040-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-005-9040-1

KeywordS

Navigation