Skip to main content

Advertisement

Log in

A Mathematical Model of Integrin-mediated Haptotactic Cell Migration

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Haptotactic cell migration, a directed response to gradients of cell—extracellular matrix adhesion, is an important process in a number of biological phenomena such as wound healing and tumour cell invasion. Previously, mathematical models of haptotaxis have been developed on the premise that cells migrate in response to gradients in the density of the extracellular matrix. In this paper, we develop a novel mathematical model of haptotaxis which includes the adhesion receptors known as integrins and a description of their functional activation, local recruitment and protrusion as part of lamellipodia. Through the inclusion of integrins, the modelled cell matter is able to respond to a true gradient of cell–matrix adhesion, represented by functionally active integrins. We also show that previous matrix-mediated models are in fact a subset of the novel integrin-mediated models, characterised by specific choices of diffusion and haptotaxis coefficients in their model equations. Numerical solutions suggest the existence of travelling waves of cell migration that are confirmed via a phase plane analysis of a simplified model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, A.R.A., Chaplain, M.A.J., 1998. Continuous and discrete mathematical models of tumor induced angiogenesis. Bull. Math. Biol. 60, 877–900.

    Article  Google Scholar 

  • Anderson, A.R.A., Chaplain, M.A.J., Newman, E.L., Steele, R.J.C., Thompson, A.M., 2000. Mathematical modelling of tumour invasion and metastasis. J. Theor. Med. 2, 129–154.

    MATH  Google Scholar 

  • Aplin, A.E., Howe, A., Alahari, S.K., Juliano, R.L., 1998. Signal transduction and signal modulation by cell adhesion receptors: The role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol. Rev. 50, 197–252.

    PubMed  Google Scholar 

  • Bray, D., 1992. Cell Movements. Garland Publishing, New York.

    Google Scholar 

  • Carter, S.B., 1965. Principles of cell motility: The direction of cell movement and cancer invasion. Nature 208, 1183–1187.

    Article  PubMed  Google Scholar 

  • Dallon, J.C., Othmer, H.G., 1997. A discrete cell model with adaptive signalling for aggregation of Dictyostelium discoideum. Phil. Trans. R. Soc. Lond. B 352(1351), 391–417.

    Article  Google Scholar 

  • Dallon, J.C., Othmer, H.G., 1998. A continuum analysis of the chemotactic signal seen by Dictyostelium discoideum. J. Theor. Biol. 194, 461–483.

    Article  Google Scholar 

  • DiMilla, P.A., Barbee, K., Lauffenburger, D.A., 1991. Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys. J. 60, 15–37.

    Article  PubMed  Google Scholar 

  • Frisch, S.M., Ruoslahti, E., 1997. Integrins and anoikis. Curr. Opin. Cell Biol. 9, 701–706.

    Article  PubMed  Google Scholar 

  • Hoefer, T., Sherratt, J.A., Maini, P.K., 1995a. Dictyostelium discoideum: Cellular self-organization in an excitable biological medium. Proc. R. Soc. Lond. B 259, 249–257.

    Article  Google Scholar 

  • Hoefer, T., Sherratt, J.A., Maini, P.K., 1995b. Cellular pattern formation during Dictyostelium aggregation. Physica D 85, 425–444.

    Article  MATH  Google Scholar 

  • Lauffenburger, D., 1989. A simple model for the effects of receptor-mediated cell–substratum adhesion on cell migration. Chem. Eng. Sci. 44(9), 1903–1914.

    Article  Google Scholar 

  • Lauffenburger, D.A., Linderman, J.J., 1993. Receptors: Models for Binding, Trafficking and Signalling. Oxford University Press, Oxford.

    Google Scholar 

  • MacArthur, B.D., 2002. Mathematical modelling of malignant growth and invasion, PhD Thesis, University of Southampton, Southampton, UK.

  • Maheshwari, G., Lauffenburger, D.A., 1998. Deconstructing (and reconstructing) cell migration. Microsc. Res. Tech. 43, 358–368.

    Article  PubMed  Google Scholar 

  • Maini, P.K., 1989. Spatial and spatio-temporal patterns in a cell-haptotaxis model. J. Math. Biol. 27, 507–522.

    Article  PubMed  MATH  MathSciNet  Google Scholar 

  • Marchant, B., 1999. Modelling cell invasion, DPhil Thesis, University of Oxford, Oxford.

  • Marusic, M., Bajzer, Z., Freyer, J.P., Vuk-Pavlovic, S., 1994. Analysis of growth of multicellular tumor spheroids by mathematical models. Cell Prolif. 27, 73–94.

    Article  PubMed  Google Scholar 

  • Mignatti, P., Rifkin, D.B., 1993. Biology and biochemistry of proteinases in tumor invasion. Physiol. Rev. 73, 161–195.

    PubMed  Google Scholar 

  • Murray, J.D., 1993. Mathematical Biology, 2nd ed. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Olsen, L., Sherratt, J.A., Maini, P.K., 1995. A mechanical model for adult dermal wound contraction and the permanence of the contracted tissue displacement profile. J. Theor. Biol. 177, 113–128.

    Article  PubMed  Google Scholar 

  • Olsen, L., Sherratt, J.A., Maini, P.K., 1996. A mathematical model for fibroproliferative wound healing disorders. Bull. Math. Biol. 58(4), 787–808.

    Article  PubMed  MATH  Google Scholar 

  • Orme, M.E., Chaplain, M.A.J., 1996. A mathematical model of vascular tumour growth and invasion. Math. Comput. Model. 23(10), 43–60.

    Article  MATH  Google Scholar 

  • Othmer, H.G., Lilly, B., Dallon, J.C., 2000. Pattern formation in a cellular slime mould. In: Doedel, E., Tuckerman, L.S. (Eds.), Numerical Methods for Bifurcation Problems and Large Scale Dynamical Systems. IMA Proc. 119, 359–383.

  • Owen, M.R., Sherratt, J.A., 1997. Pattern formation and spatiotemporal irregularity in a model for macrophage–tumour interactions. J. Theor. Biol. 189, 63–80.

    Article  PubMed  Google Scholar 

  • Perumpanani, A.J., Byrne, H.M., 1999. Extracellular matrix concentration exerts selection pressure on invasive cells. Eur. J. Cancer 35(8), 1274–1280.

    Article  PubMed  Google Scholar 

  • Perumpanani, A.J., Norbury, J., Sherratt, J.A., Byrne, H.M., 1996. Biological inferences from a mathematical model for malignant invasion. Invasion Metastasis 16, 209–221.

    PubMed  Google Scholar 

  • Perumpanani, A.J., Simmons, D.L., Gearing, A.J.H., Miller, K.M., Ward, G., Norbury, J., Schneemann, M. and Sherratt, J.A., 1998. Extracellular matrix-mediated chemotaxis can impede cell migration. Proc. R. Soc. Lond. B 265, 2347–2352.

    Google Scholar 

  • Perumpanani, A.J., Sherratt, J.A., Norbury, J., Byrne, H.M., 1999. A two parameter family of travelling waves with a singular barrier arising from the modelling of extracellular matrix mediated cellular invasion. Physica D 126, 145–159.

    Article  Google Scholar 

  • Pettet, G.J., 1996. Modelling wound healing angiogenesis and other chemotactically driven growth processes, PhD Thesis, University of Newcastle, Australia.

  • Pettet, G.J., McElwain, D.L.S., Norbury, J., 2001. Lotka–Volterra equations with chemotaxis: Walls, barriers and travelling waves. IMA J. Math. Appl. Med. Biol. 17(4), 395–413.

    Article  Google Scholar 

  • Sherratt, J.A., 1994. Chemotaxis and chemokinesis in eukaryotic cells: The Keller–Segel equations as an approximation to a detailed model. Bull. Math. Biol. 56(1), 129–146.

    Article  PubMed  MATH  Google Scholar 

  • Sherratt, J.A., Murray, J.D., 1990. Models of epidermal wound healing. Proc. R. Soc. Lond. B 241, 29–36.

    Article  Google Scholar 

  • Sherratt, J.A., Nowak, M.A., 1992. Oncogenes, anti-oncogenes and the immune response to cancer: A mathematical model. Proc. R. Soc. Lond. B 248, 261–271.

    Article  Google Scholar 

  • Sherratt, J.A., Helene Sage, E., Murray, J.D., 1993. Chemical control of eukaryotic cell movement: A new model. J. Theor. Biol. 162, 23–40.

    Article  PubMed  Google Scholar 

  • Stetler-Stevenson, W.G., Aznavoorian, S., Liotta, L.A., 1993. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu. Rev. Cell Biol. 9, 541–573.

    Article  PubMed  Google Scholar 

  • Stokes, C.L., Lauffenburger, D.A., 1991. Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J. Theor. Biol. 152, 377–403.

    Article  PubMed  Google Scholar 

  • Terranova, V.P., Diflorio, R., Lyall, R.M., Hic, S., Friesel, R., Maciag, T., 1985. Human endothelial cells maintained in the absence of fibroblast growth factor undergo structural and functional alterations that are incompatible with their in vivo differentiated properties. J. Cell Biol. 83, 468–486.

    Google Scholar 

  • Tracqui, P., 1995. From passive diffusion to active cellular migration in mathematical models of tumour invasion. Acta Biotheor. 43, 443–464.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Mallet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallet, D.G., Pettet, G.J. A Mathematical Model of Integrin-mediated Haptotactic Cell Migration. Bull. Math. Biol. 68, 231–253 (2006). https://doi.org/10.1007/s11538-005-9032-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-005-9032-1

Keywords

Navigation