Skip to main content
Log in

Assessment of dynamic cerebral autoregulation and cerebral carbon dioxide reactivity during normothermic cardiopulmonary bypass

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Despite increased risk of neurological complications after cardiac surgery, monitoring of cerebral hemodynamics during cardiopulmonary bypass (CPB) is still not a common practice. Therefore, a technique to evaluate dynamic cerebral autoregulation and cerebral carbon dioxide reactivity (CO2R) during normothermic nonpulsatile CPB is presented. The technique uses continuous recording of invasive arterial blood pressure, middle cerebral artery blood flow velocity, absolute cerebral tissue oxygenation, in-line arterial carbon dioxide levels, and pump flow measurement in 37 adult male patients undergoing elective CPB. Cerebral autoregulation is estimated by transfer function analysis and the autoregulation index, based on the response to blood pressure variation induced by cyclic 6/min changes of indexed pump flow from 2.0 to 2.4 up to 2.8 L/min/m2. CO2R was calculated from recordings of both cerebral blood flow velocity and cerebral tissue oxygenation. Cerebral autoregulation and CO2R were estimated at hypocapnia, normocapnia, and hypercapnia. CO2R was preserved during CPB, but significantly lower for hypocapnia compared with hypercapnia (p < 0.01). Conversely, cerebral autoregulation parameters such as gain, phase, and autoregulation index were significantly higher (p < 0.01) during hypocapnia compared with both normocapnia and hypercapnia. Assessing cerebral autoregulation and CO2R during CPB, by cyclic alteration of pump flow, showed an impaired cerebral autoregulation during hypercapnia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aaslid R (2006) Cerebral autoregulation and vasomotor reactivity. Front Neurol Neurosci 66:825–832

    Google Scholar 

  2. Aaslid R, Lindegaard KF, Sorteberg W, Nornes H (1989) Cerebral autoregulation dynamics in humans. Stroke 20:45–52

    Article  CAS  PubMed  Google Scholar 

  3. Ainslie PN, Celi L, Mc Grattan K, Peebles K, Ogoh S (2008) Dynamic cerebral autoregulation and baroreflex sensitivity during modest and severe step changes in arterial PCO2. Brain Res 1230:115–124

    Article  CAS  PubMed  Google Scholar 

  4. Birch AA, Dirnhuber MJ, Hartley-Davies R, Iannotti F, Neil-Dwyer G (1995) Assessment of autoregulation by means of periodic changes in blood pressure. Stroke 26:834–837

    Article  CAS  PubMed  Google Scholar 

  5. Brady K, Joshi B, Zweifel C, Smielewski P, Czosnyka M, Easley RB, Hogue CW Jr (2010) Real-time continuous monitoring of cerebral blood flow autoregulation using near-infrared spectroscopy in patients undergoing cardiopulmonary bypass. Stroke 41:1951–1956

    Article  PubMed  Google Scholar 

  6. Brothers RM, Ganio MS, Hubing KA, Hastings JL, Crandall CG (2011) End-tidal carbon dioxide tension reflects arterial carbon dioxide tension in the heat-stressed human with and without simulated hemorrhage. Am J Physiol Regul Integr Comp Physiol 300:R978–R983

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Brugniaux JV, Hodges AN, Hanly PJ, Poulin MJ (2007) Cerebrovascular responses to altitude. Respir Physiol Neurobiol 158:212–223

    Article  PubMed  Google Scholar 

  8. Cook DJ, Proper JA, Orszulak TA, Daly RC, Oliver WC Jr (1997) Effect of pump flow rate on cerebral blood flow during hypothermic cardiopulmonary bypass in adults. J Cardiothorac Vasc Anesth 11:415–419

    Article  CAS  PubMed  Google Scholar 

  9. Diehl RR, Linden D, Lucke D, Berlit P (1995) Phase relationship between cerebral blood flow velocity and blood pressure. A clinical test of autoregulation. Stroke 26:1801–1804

    Article  CAS  PubMed  Google Scholar 

  10. Diehl RR, Linden D, Lucke D, Berlit P (1998) Spontaneous blood pressure oscillations and cerebral autoregulation. Clin Auton Res 8:7–12

    Article  CAS  PubMed  Google Scholar 

  11. Edgell H, Robertson AD, Hughson RL (2012) Hemodynamics and brain blood flow during posture change in younger women and postmenopausal women compared with age-matched men. J Appl Physiol 112:1482–1493

    Article  CAS  PubMed  Google Scholar 

  12. Gommer E, Shijaku E, Mess W, Reulen J (2010) Dynamic cerebral autoregulation: different signal processing methods without influence on results and reproducibility. Med Biol Eng Comput 48:1243–1250

    Article  PubMed Central  PubMed  Google Scholar 

  13. Gommer ED, Staals J, van Oostenbrugge RJ, Lodder J, Mess WH, Reulen JPH (2008) Dynamic cerebral autoregulation and cerebrovascular reactivity: a comparative study in lacunar infarct patients. Physiol Meas 29:1293–1303

    Article  CAS  PubMed  Google Scholar 

  14. Hamner JW, Cohen MA, Mukai S, Lipsitz LA, Taylor JA (2004) Spectral indices of human cerebral blood flow control: responses to augmented blood pressure oscillations. J Physiol 559(3):965–973

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Huber P, Handa J (1967) Effect of contrast material, hypercapnia, hyperventilation, hypertonic glucose and papaverine on the diameter of the cerebral arteries: angiographic determination in man. Invest Radiol 2:17–32

    Article  CAS  PubMed  Google Scholar 

  16. Ide K, Eliasziw M, Poulin MJ (2003) Relationship between middle cerebral artery blood velocity and end-tidal PCO2 in the hypocapnic-hypercapnic range in humans. J Appl Physiol 95:129–137

    PubMed  Google Scholar 

  17. Kadoi Y, Saito S, Goto F, Fujita N (2004) The effect of diabetes on the interrelationship between jugular venous oxygen saturation responsiveness to phenylephrine infusion and cerebrovascular carbon dioxide reactivity. Anesth Analg 99:325–331

    Article  CAS  PubMed  Google Scholar 

  18. Marinoni M, Ginanneschi A, Forleo P, Amaducci L (1997) Technical limits in transcranial doppler recording: inadequate acoustic windows. Ultrasound Med Biol 23:1275–1277

    Article  CAS  PubMed  Google Scholar 

  19. Markwalder T-M, Grolimund P, Seiler RW, Roth F, Aaslid R (1984) Dependency of blood flow velocity in the middle cerebral artery on end-tidal carbon dioxide partial pressure: a transcranial ultrasound Doppler study. J Cereb Blood Flow Metab 4:368–372

    Article  CAS  PubMed  Google Scholar 

  20. Murkin JM (1995) The role of CPB management in neurobehavioral outcomes after cardiac surgery. Ann Thorac Surg 59:1308–1311

    Article  CAS  PubMed  Google Scholar 

  21. Murphy GS, Hessel EA II, Groom RC (2009) Optimal perfusion during cardiopulmonary bypass: an evidence-based approach. Anest Analg 108:1394–1417

    Article  Google Scholar 

  22. Nicolet J, Gillard T, Gindre G, Cervenansky F, Duale C, Bazin JE, De Riberolles C, Schoeffler P, Lemaire JJ (2005) Modifications of spontaneous cerebral blood flow oscillations during cardiopulmonary bypass. Acta Neurochir 95(Suppl):337–339

    Article  CAS  Google Scholar 

  23. Ogawa Y, Iwasaki K, Aoki K, Shibata S, Kato J, Ogawa S (2007) Central hypervolemia with hemodilution impairs dynamic cerebral autoregulation. Anesth Analg 105:1389–1396

    Article  PubMed  Google Scholar 

  24. Panerai RB, Deverson ST, Mahony P, Hayes P, Evans DH (1999) Effects of CO2 on dynamic cerebral autoregulation measurement. Physiol Meas 20:265–275

    Article  CAS  PubMed  Google Scholar 

  25. Panerai RB, Eames PJ, Potter JF (2006) Multiple coherence of cerebral blood flow velocity in humans. Am J Physiol Heart Circ Physiol 291:H251–H259

    Article  CAS  PubMed  Google Scholar 

  26. Panerai RB (2008) Cerebral autoregulation: from models to clinical applications. Cardiovasc Eng 8:42–59

    Article  PubMed  Google Scholar 

  27. Paulson OB, Strandgaard S, Edvinsson L (1990) Cerebral autoregulation. Cerebrovasc Brain Metab Rev 2:161–192

    CAS  PubMed  Google Scholar 

  28. Peebles K, Celi L, McGrattan K, Murrell C, Thomas K, Ainslie PN (2007) Human cerebrovascular and ventilatory CO2 reactivity to end-tidal, arterial and internal jugular vein PCO2. J Physiol 584(1):347–357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Peng T, Rowley A, Ainslie P, Poulin M, Payne S (2008) Multivariate system indentification for cerebral autoregulation. Ann Biomed Eng 36:308–320

    Article  PubMed  Google Scholar 

  30. Petersen KD, Lamdsfeldt U, Cold GE, Petersen CB, Mau S, Hauerberg J, Holst P, Skovgaard Olsen K (2003) Intracranial pressure and cerebral hemodynamic in patients with cerebral tumors: a randomized prospective study of patients subjected to craniotomy in propofol-fentanyl, isoflurane-fentanyl, or sevoflurane-fentanyl anesthesia. Anesthesiology 98:329–336

    Article  CAS  PubMed  Google Scholar 

  31. Sorteberg W, Lindegaard KF, Rootwelt K, Dahl A, Nyberg-Hansen R, Russell D, Nornes H (1989) Effect of acetazolamide on cerebral artery blood velocity and regional cerebral blood flow in normal subjects. Acta Neurochir 97:139–145

    Article  CAS  PubMed  Google Scholar 

  32. Strebel S, Lam AM, Matta B, Mayberg TS, Aaslid R, Newell DW (1995) Dynamic and static cerebral autoregulation during isoflurane, desflurane, and propofol anesthesia. Anesthesiology 83:66–76

    Article  CAS  PubMed  Google Scholar 

  33. Tiecks FP, Lam AM, Aaslid R, Newell DW (1995) Comparison of static and dynamic cerebral autoregulation measurements. Stroke 26:1014–1019

    Article  CAS  PubMed  Google Scholar 

  34. van Mook WNKA, Rennenberg RJMW, Schurink GW, van Oostenbrugge RJ, Mess H, Hofman PAM, de Leeuw PW (2005) Cerebral hyperperfusion syndrome. Lancet Neurol 4:877–888

    Article  PubMed  Google Scholar 

  35. Zhang R, Zuckerman JH, Giller CA, Levine BD (1998) Transfer function analysis of dynamic cerebral autoregulation in humans. Am J Physiol 274:H233–H241

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. R.B. Panerai (University of Leicester, UK) and Dr. A.S. Sharma (Maastricht University Medical Centre and Cardiovascular Research Institute Maastricht - CARIM, Maastricht, the Netherlands) for their valuable contributions to the manuscript.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ervin E. Ševerdija.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ševerdija, E.E., Gommer, E.D., Weerwind, P.W. et al. Assessment of dynamic cerebral autoregulation and cerebral carbon dioxide reactivity during normothermic cardiopulmonary bypass. Med Biol Eng Comput 53, 195–203 (2015). https://doi.org/10.1007/s11517-014-1225-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-014-1225-z

Keywords

Navigation