Skip to main content

Advertisement

Log in

Formation and Stability of ω-3 Oil Emulsion-Based Delivery Systems Using Plant Proteins as Emulsifiers: Lentil, Pea, and Faba Bean Proteins

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Many sectors of the food industry are interested in replacing synthetic or animal-based ingredients with plant-based alternatives to create products that are more natural, environmentally friendly, and sustainable. In this study, the ability of several plant protein concentrates to act as natural emulsifiers in oil-in-water emulsions fortified with omega-3 fatty acids was investigated. The impact of emulsifier type on the formation and stability of the emulsions was determined by measuring changes in droplet characteristics (size and charge) under different homogenization, pH, salt, and temperature conditions. Pea (Pisum sativum), lentil (Lens culinaris) and faba bean (Vicia faba) protein concentrates all proved to be effective emulsifiers for forming and stabilizing 10 wt% algae oil-in-water emulsions produced by high-pressure homogenization. The droplet size decreased with increasing emulsifier concentration, and relatively small oil droplets (d < 0.3 μm) could be formed at higher emulsifier levels (5% protein). Lentil protein-coated droplets were the most stable to environmental stresses such as pH, ionic strength and temperature changes. These results have important implications for the production of functional foods and beverages from natural plant-based ingredients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Avramenko, Master’s thesis, University of Saskatchewan, (2013)

  2. R.S.H. Lam, M.T. Nickerson, Food Chem. 141(2), 975–984 (2013)

    Article  CAS  Google Scholar 

  3. B. Ozturk, S. Argin, M. Ozilgen, D.J. McClements, Food Chem. 187, 499–506 (2015)

    Article  CAS  Google Scholar 

  4. H.J. Kim, E.A. Decker, D.J. McClements, J. Agric. Food Chem. 50(24), 7131–7137 (2002a)

    Article  CAS  Google Scholar 

  5. E. Dickinson, Colloids Surf. B: Biointerfaces 81(1), 130–140 (2010)

    Article  CAS  Google Scholar 

  6. M. Hu, D.J. McClements, E.A. Decker, J. Agric. Food Chem. 51(6), 1696–1700 (2003)

    Article  CAS  Google Scholar 

  7. L. Aberkane, G. Roudaut, R. Saurel, Food Bioprocess Technol. 7(5), 1505–1517 (2014)

    Article  CAS  Google Scholar 

  8. A.C. Karaca, N.H. Low, M.T. Nickerson, Trends Food Sci. Technol. 42(1), 5–12 (2015)

    Article  Google Scholar 

  9. F. Roy, J.I. Boye, B.K. Simpson, Food Res. Int. 43(2), 432–442 (2010)

    Article  CAS  Google Scholar 

  10. E.M. Papalamprou, G.I. Doxastakis, V. Kiosseoglou, J. Sci. Food Agric. 90(2), 304–313 (2010)

    Article  CAS  Google Scholar 

  11. J.I. Boye, S. Aksay, S. Roufik, et al., Food Res. Int. 43(2), 537–546 (2010a)

    Article  CAS  Google Scholar 

  12. F. Donsi, B. Senatore, Q. Huang, G. Ferrari, J. Agric. Food Chem. 58(19), 10653–10660 (2010)

    Article  CAS  Google Scholar 

  13. B. Swanson, J. Am. Oil Chem. Soc. 67(5), 276–280 (1990)

    Article  CAS  Google Scholar 

  14. S.M. Helmer, R.T. Mikolajczyk, J. McAlaney, et al., Prev. Med. 67, 204–209 (2014)

    Article  CAS  Google Scholar 

  15. C.P. Chee, J.J. Gallaher, D. Djordjevic, et al., J. Dairy Res. 72(3), 311–316 (2005)

    Article  CAS  Google Scholar 

  16. C.P. Chee, D. Djordjevic, H. Faraji, et al., Milchwissenschaft. Milk Sci. Int. 62(1), 66 (2007)

    CAS  Google Scholar 

  17. C. Jacobsen, Agro Food Ind. Hi-Tech 19(5), 9–12 (2008)

    CAS  Google Scholar 

  18. C. Jacobsen, Eur. J. Lipid Sci. Technol. 117(11), 1853–1866 (2015)

    Article  CAS  Google Scholar 

  19. M. Joshi, B. Adhikari, P. Aldred, J.F. Panozzo, S. Kasapis, Food Chem. 129(4), 1513–1522 (2011)

    Article  CAS  Google Scholar 

  20. O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, J. Biol. Chem. 193(1), 265–275 (1951)

    CAS  Google Scholar 

  21. R.E. Aluko, R.Y. Yada, Int. J. Food Sci. Nutr. 48(1), 31–39 (1997)

    Article  CAS  Google Scholar 

  22. S. Tcholakova, N.D. Denkov, T. Danner, Langmuir 20(18), 7444–7458 (2004)

    Article  CAS  Google Scholar 

  23. R. Walker, E.A. Decker, D.J. McClements, Food Funct. 6(1), 42–55 (2015)

    Article  Google Scholar 

  24. E. Makri, E. Papalamprou, G. Doxastakis, FOOHYD Food Hydrocoll. 19(3), 583–594 (2005)

    Article  CAS  Google Scholar 

  25. A.C. Karaca, M.T. Nickerson, N.H. Low, J. Agric. Food Chem. 59(24), 13203–13211 (2011)

    Article  Google Scholar 

  26. T. Zhang, B. Jiang, W. Mu, Z. Wang, Food Hydrocoll. 23(1), 146–152 (2009)

    Article  Google Scholar 

  27. M.M. Sakuno, S. Matsumoto, S. Kawai, K. Taihei, Y. Matsumura, Langmuir 24(20), 11483–11488 (2008)

    Article  CAS  Google Scholar 

  28. E. Dickinson, J. Dairy Sci. 80(10), 2607–2619 (1997)

    Article  CAS  Google Scholar 

  29. M. Jayasundera, B. Adhikari, P. Aldred, A. Ghandi, J. Food Eng. 93(3), 266–277 (2009)

    Article  CAS  Google Scholar 

  30. K. Landström, B. Bergenstahl, J. Alsins, M. Almgren, Colloid Surf. B 12(3–6), 429–440 (1999)

    Article  Google Scholar 

  31. D.J. McClements, Crit. Rev. Food Sci. Nutr. 47(7), 611–649 (2007)

    Article  CAS  Google Scholar 

  32. S. Tcholakova, N.D. Denkov, D. Sidzhakova, I.B. Ivanov, B. Campbell, Langmuir 19(14), 5640–5649 (2003)

    Article  CAS  Google Scholar 

  33. Z. Cui, Y. Chen, X. Kong, C. Zhang, Y. Hua, J. Agric. Food Chem. 62(7), 1634–1642 (2014)

    Article  CAS  Google Scholar 

  34. M.C. Puppo, V. Beaumal, N. Chapleau, et al., Food Hydrocoll. 22(6), 1079–1089 (2008)

    Article  CAS  Google Scholar 

  35. R. Waninge, P. Walstra, J. Bastiaans, et al., J. Agric. Food Chem. 53(3), 716–724 (2005)

    Article  CAS  Google Scholar 

  36. C. Chang, S. Tu, S. Ghosh, M.T. Nickerson, Food Res. Int. 77, 360–367 (2015)

    Article  CAS  Google Scholar 

  37. D.J. McClements, Curr. Opin. Colloid Interface Sci. 9(5), 305–313 (2004)

    Article  CAS  Google Scholar 

  38. D.F. Parsons, A. Salis, J. Chem. Phys. 142(13) (2015)

  39. W. Kunz, Curr. Opin. Colloid Interface Sci. 15(1–2), 34–39 (2010)

    Article  CAS  Google Scholar 

  40. N. Tangsuphoom, J.N. Coupland, J. Food Sci. 73(6), E274–E280 (2008)

    Article  CAS  Google Scholar 

  41. A. Sarkar, H. Kamaruddin, A. Bentley, S. Wang, Food Hydrocoll. 57, 160–168 (2016)

    Article  CAS  Google Scholar 

  42. J.I. Boye, F. Zare, A. Pletch, Food Res. Int. 43(2), 414–431 (2010b)

    Article  CAS  Google Scholar 

  43. S.M. Sun, T.C. Hall, J. Agric. Food Chem. 23(2), 184–189 (1975)

    Article  CAS  Google Scholar 

  44. R.E. Aluko, R.Y. Yada, Food Chem. 53(3), 259–265 (1995)

    Article  CAS  Google Scholar 

  45. S.D. Arntfield, E.D. Murray, M.A.H. Ismond, J. Food Sci. 51(2), 371–377 (1986)

    Article  CAS  Google Scholar 

  46. S.D. Arntfield, E.D. Murray, Can I Food Sc. Tech. J. 14(4), 289–294 (1981)

    Article  Google Scholar 

  47. J.L. Mession, N. Sok, A. Assifaoui, R. Saurel, J. Agric. Food Chem. 61(6), 1196–1204 (2013)

    Article  CAS  Google Scholar 

  48. G.T. Meng, C.Y. Ma, Food Chem. 73(4), 453–460 (2001)

    Article  CAS  Google Scholar 

  49. M.M. Il'in, M.G. Semenova, L.E. Belyakova, A.S. Antipova, Y.N. Polikarpov, J. Colloid Interface Sci. 278(1), 71–80 (2004)

    Article  Google Scholar 

  50. V.L. Shnyrov, M.J. Marcos, E. Villar, Biochem. Mol. Biol. Int. 39(4), 647–656 (1996)

    CAS  Google Scholar 

  51. T.J. Wooster, M.A. Augustin, J. Colloid Interface Sci. 313(2), 665–675 (2007)

    Article  CAS  Google Scholar 

  52. V.R. Harwalkar, C.Y. Ma, J. Food Sci. 52(2), 394–398 (1987)

    Article  CAS  Google Scholar 

  53. H.J. Kim, E.A. Decker, D.J. McClements, Langmuir 18(20), 7577–7583 (2002b)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Cansu Ekin Gumus thanks the Ministry of National Education of Turkey for the International Graduate Fellowship provided for her ongoing doctoral degree. We also thank Jenny Tang and John Krill from DSM for useful advice and discussions.

This project was supported by Agriculture and Food Research Initiative Grant no. 2014-67017-21635 from the USDA National Institute of Food and Agriculture. It was also partly supported from funding provided by DSM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Julian McClements.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gumus, C.E., Decker, E.A. & McClements, D.J. Formation and Stability of ω-3 Oil Emulsion-Based Delivery Systems Using Plant Proteins as Emulsifiers: Lentil, Pea, and Faba Bean Proteins. Food Biophysics 12, 186–197 (2017). https://doi.org/10.1007/s11483-017-9475-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-017-9475-6

Keywords

Navigation