Skip to main content
Log in

A maximum principle for partially observed optimal control of forward-backward stochastic control systems

  • Research Papers
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper studies an optimal control problem for partially observed forward-backward stochastic control system with a convex control domain and the forward diffusion term containing control variable. A maximum principle is proved for this kind of partially observable optimal control problems and the corresponding adjoint processes are characterized by the solutions of certain forward-backward stochastic differential equations in finite-dimensional spaces. One partially observed recursive linear-quadratic (LQ) optimal control example is also given to show the application of the obtained maximum principle. An explicit observable optimal control is obtained in this example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pardoux E, Peng S. Adapted solution of backward stochastic equation. Syst Control Lett, 1990, 14: 55–61

    Article  MATH  MathSciNet  Google Scholar 

  2. Duffie D, Epstein L. Stochastic differential utility. Econometrica, 1992, 60: 353–394

    Article  MATH  MathSciNet  Google Scholar 

  3. El Karoui N, Peng S, Quenez M C. Backward stochastic differential equations in finance. Math Finance, 1997, 7: 1–71

    Article  MATH  MathSciNet  Google Scholar 

  4. Peng S. Backward stochastic differential equations and applications to optimal control. Appl Math Optim, 1993, 27: 125–144

    Article  MATH  Google Scholar 

  5. Hamadène S, Lepeltier J P. Zero-sum stochastic differential games and backward equations. Syst Control Lett, 1995, 24: 259–263

    Article  MATH  Google Scholar 

  6. Shi J, Wu Z. The maximum principle for fully coupled forward-backward stochastic control system. Acta Autom Sin, 2006, 32: 161–169

    MathSciNet  Google Scholar 

  7. Liu X, Liu K. The generalization of a class of impulse stochastic control models of a geometric Brownian motion. Sci China Ser F-Inf Sci, 2009, 52: 983–998.

    Article  MATH  Google Scholar 

  8. Peng S. A general stochastic maximum principle for optimal control problems. SIAM J Control Optim, 1990, 28: 966–979

    Article  MATH  MathSciNet  Google Scholar 

  9. Fleming W H. Optimal control of partially observable diffusions. SIAM J Control Optim, 1968, 6: 194–214

    Article  MATH  MathSciNet  Google Scholar 

  10. Bensoussan A. Maximum principle and dynamic programming approaches of the optimal control of partially observed diffusions. Stochastics, 1983, 9: 169–222

    MATH  MathSciNet  Google Scholar 

  11. Haussmann U G. The maximum principle for optimal control of diffusions with partial information. SIAM J Control Optim, 1987, 25: 341–361

    Article  MATH  MathSciNet  Google Scholar 

  12. Tang S. The maximum principle for partially observed optimal control of stochastic differential equations. SIAM J Control Optim, 1998, 36: 1596–1617

    Article  MATH  MathSciNet  Google Scholar 

  13. Zhou X. On the necessary conditions of optimal controls for stochastic partial differential equations. SIAM J Control Optim, 1993, 31: 1462–1478

    Article  MATH  MathSciNet  Google Scholar 

  14. Williams N. On dynamic principal-agent problems in continuous time. Working Paper, available at http://www.ssc.wisc. edu/nwilliam/dynamic-pa2.pdf. 2009

  15. Baras J S, Elliott R J, Kohlmann M. The partially observed stochastic minimum principle. SIAM J Control Optim, 1989, 27: 1279–1292

    Article  MATH  MathSciNet  Google Scholar 

  16. Tang S, Li X. Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J Control Optim, 1994, 32: 1447–1475

    Article  MATH  MathSciNet  Google Scholar 

  17. Wonham W M. On the separation theorem of stochastic control. SIAM J Control, 1968, 6: 312–326

    Article  MATH  MathSciNet  Google Scholar 

  18. Xiong J. An Introduction to Stochastic Filtering Theory. Oxford: Oxford University Press, 2008

    MATH  Google Scholar 

  19. Yong J, Zhou X. Stochastic controls: Hamiltonian systems and HJB equations. New York: Springer-Verlag, 1999

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Z. A maximum principle for partially observed optimal control of forward-backward stochastic control systems. Sci. China Inf. Sci. 53, 2205–2214 (2010). https://doi.org/10.1007/s11432-010-4094-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-010-4094-6

Keywords

Navigation